Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-20T18:14:04.906Z Has data issue: false hasContentIssue false

The Effect of Strain on the Formation of Dislocations at the SiGe/Si Interface

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recently much interest has been devoted to Si-based heteroepitaxy, and in particular, to the SiGe/Si system. This is mostly for economical reasons: Si-based technology is much more advanced, is widely available, and is cheaper than GaAs-based technology. SiGe opens the door to the exciting (and lucrative) area of Si-based high-performance devices, although optical applications are still limited to GaAs-based technology. Strained SiGe layers form the base of heterojunction bipolar transistors (HBTs), which are currently used in commercial high-speed analogue applications. They promise to be low-cost compared to their GaAs counterparts and give comparable performance in the 2-20-GHz regime. More recently we have started to investigate the use of relaxed SiGe layers, which opens the door to a wider range of application and to the use of SiGe in complementary metal oxide semiconductor (CMOS) devices, which comprise strained Si and SiGe layers. Some recent successes include record-breaking low-temperature electron mobility in modulation-doped layers where the mobility was found to be up to 50 times better than standard Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Even more recently, SiGe-based p-type MOSFETS were built with oscillation frequency of up to 50 GHz, which is a new record, in any p-type material for the same design rule.

Type
Heteroepitaxy and Strain
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Harame, D.et al., in Int. Electron Device Meeting IEDM′95 (Washington, DC, December 10–13, 1995).Google Scholar
2.Ismail, K., et al., in Int. Electron Device Meeting IEDM′95 (Washington, DC, December 10–13, 1995).Google Scholar
3.Ismail, K., Arafa, M., Saenger, K.L., Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 66 (1995) p. 1077.CrossRefGoogle Scholar
4.Ismail, K., Nelson, S.F., Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 63 (1993) p. 660.CrossRefGoogle Scholar
5.LeGoues, F.K., Meyerson, B.S., Morar, J.F., and Kirchner, P.D., J. Appl. Phys. 71 (1992) p. 4230.CrossRefGoogle Scholar
6.LeGoues, F.K., Meyerson, B.S., and Morar, J.M., Phys. Rev. Lett. 66 (1991) p. 2903.CrossRefGoogle Scholar
7.LeGoues, F.K., Mooney, P.M., and Tersoff, J., Phys. Rev. Lett. 71 (1993) p. 396.CrossRefGoogle Scholar
8.LeGoues, F.K., Reuter, M.C., Tersoff, J., and Tromp, R., Phys. Rev. Lett. 73 (1994) p. 300.CrossRefGoogle Scholar
9.Hammar, M., LeGoues, F.K., Tersoff, J., Reuter, M.C., and Tromp, R.M., Surf. Sci. (in press).Google Scholar
10.Mooney, P., LeGoues, F.K., and Tersoff, J., J. Appl. Phys. 75 (1994) p. 3968.CrossRefGoogle Scholar
11.Mooney, P.M., Jordan-Sweet, J.L., Stephenson, G.B., LeGoues, F.K., Chu, J.O., and Ismail, K., Adv. in X-Ray Analysis 38 (1994).Google Scholar
12.Lutz, M.A., Feenstra, R.M., LeGoues, F.K., Mooney, P.M., and Chu, J.O., Appl. Phys. Lett. 66 (1995) p. 724.CrossRefGoogle Scholar
13.van der Merwe, J.H., J. Appl. Phys. 34 (1963) p. 117.CrossRefGoogle Scholar
14.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 32 (1976) p. 265.CrossRefGoogle Scholar
15.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 29 (1975) p. 273.CrossRefGoogle Scholar
16.Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51 (1987) p. 1325.CrossRefGoogle Scholar
17.Kamat, S.V. and Hirth, J.P., J. Appl. Phys. 67 (1990) p. 6844.CrossRefGoogle Scholar
18.Eaglesham, D.J., Kvam, D.P., Maher, D.M., Humphreys, C.J., and Bean, J.C., Philos. Mag. 59 (1989) p. 1059.CrossRefGoogle Scholar
19.LeGoues, F.K., Eberl, K., and Iyer, S.S., Appl. Phys. Lett. 60 (1992) p. 2862.CrossRefGoogle Scholar
20.Fitzgerald, E.A., J. Vac. Sci. Technol. B7 (1989) p. 782.CrossRefGoogle Scholar
21.LeGoues, F.K., Copel, M., and Tromp, R.M., Phys. Rev. B 42 (1990) p. 11690.CrossRefGoogle Scholar
22.LeGoues, F.K., Copel, M., and Tromp, R.M., Phys. Rev. B 44 (1991) p. 12894.CrossRefGoogle Scholar
23.Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72 (1994) p. 3570.CrossRefGoogle Scholar
24.LeGoues, F.K., Phys. Rev. Lett. 72 (1994) p. 876.CrossRefGoogle Scholar
25.LeGoues, F.K., Hammar, M., Reuter, M.C., and Tromp, R. (unpublished).Google Scholar
26. See for example, Abrahams, M.S., Weisberg, L.R., Buicchi, C.J., and Blanc, J., J. Mater. Sci. 4 (1969) p. 223.CrossRefGoogle Scholar
27.Meyerson, B.S., Uram, K.J., and LeGoues, F.K., Appl. Phys. Lett. 53 (1988) p. 2555.CrossRefGoogle Scholar