Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T08:37:36.316Z Has data issue: false hasContentIssue false

The Dynamics of Deposit Formation in Thermal-Spray Processes

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

In thermal spraying, coatings are formed by particles flattening and piling up on the substrate. At impact, the sudden deceleration of the particle causes a pressure buildup at the particle-surface interface; the high pressure inside the particle forces melted material to flow laterally and ductile material to deform. The particle spreads outward from the point of impact and forms a “splat.” The arresting of spreading results from the conversion of particle kinetic energy into work of viscous deformation and surface energy. Solidification constraint (when the solidification front is advancing from the substrate surface fast enough to interact with the liquid during spreading) and mechanical constraint (due to the roughness of the substrate surface) can interfere with the flattening process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jones, H., Rep. Prog. Phys. 36 (1973) p. 1425.CrossRefGoogle Scholar
2.Wang, G.X. and Matthys, E.F., Int. J. Rapid Solidification 6 (1991) p. 297.Google Scholar
3.Clyne, T.W., Metall. Trans. B 15 (1994) p. 369.CrossRefGoogle Scholar
4.Clyne, T.W. and Gill, S.C., J. Thermal Spray Technol. 5 (1996) p. 401.CrossRefGoogle Scholar
5.Kuroda, S., in Proc. 15th Int. Thermal Spray Conf., edited by Coddet, C. (ASM International, Materials Park, OH, 1998) p. 539.Google Scholar
6.Houben, J.M., PhD thesis, Technishe Universiteit Eindhoven, 1988.Google Scholar
7.Dykhuisen, R.C., J. Thermal Spray Technol. 3 (1994) p. 351.CrossRefGoogle Scholar
8.Fauchais, P., Vardelle, M., Vardelle, A., and Bianchi, L., in Advances in Inorganic Films and Coatings, edited by Vincenzini, P. (Groupe Editoriorale Faenza Editrici, Faenze, Italy, 1995) p. 83.Google Scholar
9.Jiang, X., Matejicek, J., and Sampath, S., Mater. Sci. Eng., A 272 (1999) p. 189.CrossRefGoogle Scholar
10.Jiang, X., Matejicek, J., Kulkarni, A., Herman, H., Sampath, S., Gilmore, D., and Neiser, R., in Thermal Spray: Surface Engineering via Applied Research (ASM International, Materials Park, OH 2000) p. 157.Google Scholar
11. DPV-2000, Tecnar Automation Ltee, St Hubert, Quebec, Canada.Google Scholar
12. Spraywatch, Oseir Ltd., Tampere, Finland.Google Scholar
13.Moreau, C., Cielo, P., Lamontagne, M., Dallaire, S., and Vardelle, M., Meas. Sci. Technol. 1 (1990) p. 807.CrossRefGoogle Scholar
14.Moreau, C., Gougeon, P., and Lamontagne, M., J. Thermal Spray Technol. 4 (1995) p. 25.CrossRefGoogle Scholar
15.Gougeon, P. and Moreau, C., in Thermal Spray: A United Forum for Scientific and Technological Advances, edited by Berndt, C.C. (ASM International, Materials Park, OH, 1997) p. 619.Google Scholar
16.Vardelle, M., Vardelle, A., Fauchais, P., and Moreau, C., Meas. Sci. Technol. 5 (1994) p. 205.CrossRefGoogle Scholar
17.Leger, A.C., Vardelle, M., Vardelle, A., Fauchais, P., Sampath, S., Berndt, C.C., and Herman, H., in Thermal Spray: Practical Solutions for Engineering Problems, edited by Berndt, C.C. (ASM International, Materials Park, OH, 1996) p. 623.Google Scholar
18.Escure, C., Vardelle, M., and Fauchais, P., in Proc. Int. Thermal Spray Conf., May 2000, Montreal, in press.Google Scholar
19.Haddadi, A., PhD thesis, University of Limoges, France, 1998 (in French).Google Scholar
20.Bertagnoli, M., Marchese, M., and Jaccuci, G., J. Thermal Spray Technol. 4 (1995) p. 41.CrossRefGoogle Scholar
21.Knotek, O. and Elsing, R., Surf. Coat. Technol. 32 (1987) p. 261.CrossRefGoogle Scholar
22.Fukanuma, H., J. Thermal Spray Technol. 3 (1994) p. 33.CrossRefGoogle Scholar
23.Smith, M.F., Neiser, R.A., and Dykhuisen, R.C., in Thermal Spray: Industrial Applications, edited by Berndt, C.C. and Sampath, S. (ASM International, Materials Park, OH, 1994) p. 603.Google Scholar
24.Ilavsky, J., Allen, A.J., Long, G.G., and Krueger, S., J. Am. Ceram. Soc. 80 (1997) p. 733.CrossRefGoogle Scholar
25.Kanouf, M.P., Neiser, R.A., and Roemer, T.J., J. Thermal Spray Technol. 7 (1998) p. 219.CrossRefGoogle Scholar
26.Madejski, J., Int. J. Heat Mass Transfer 26 (1983) p. 1095.CrossRefGoogle Scholar
27.Fiedler, R. and Naber, J., in Proc. Combustion Institute Spring Technical Meeting on Combustion Fundamentals and Applications (1989) p. 269.Google Scholar
28.Bennett, T. and Poulikakos, D., J. Mater. Sci. 28 (1993) p. 961.CrossRefGoogle Scholar
29.Trapaga, G. and Szekely, J., Metal. Trans. B 22 (1991) p. 901.CrossRefGoogle Scholar
30.Liu, H., Lavernia, E.J., and Rangel, R.H., J. Phys. D: Appl. Phys. 26 (1993) p. 1900.CrossRefGoogle Scholar
31.Pasendideh-Fard, M. and Mostaghimi, J., in Proc. 7th Natl. Thermal Spray Conf., edited by Berndt, C.C. (ASM International, Materials, Park, OH, 1994) p. 405.Google Scholar
32.Bertagnoli, M., Marchese, M., Jaccuci, G., Doltsinis, I., and Noelting, S., J. Comp. Phys. 133 (1997) p. 205.CrossRefGoogle Scholar
33.Montavon, G., Feng, Z.G., Coddet, C., Feng, Z.Q., and Domaszewski, M., in Thermal Spray: A United Forum for Scientific and Technological Advances, edited by Berndt, C.C. (ASM International, Materials Park, OH, 1997) p. 627.Google Scholar
34.Bussmann, M., Aziz, S.D., Chandra, S., and Mostaghimi, J., in Thermal Spray: Meeting the Challenges of the 21st Century, edited by Coddet, C. (ASM International, Materials Park, OH, 1998) p. 413.Google Scholar
35.Mostaghimi, J. (private communication).Google Scholar
36.Vardelle, A., Vardelle, M., Fauchais, P., and Gobin, D., NATO Series E: Applied Science 282 (1995) p. 95.Google Scholar
37.Robert, C., Vardelle, A., Wang, G.X., and Sampath, S., in Thermal Spray: Meeting the Challenges of the 21st Century, edited by Coddet, C. (ASM International, Materials Park, OH, 1998) p. 407.Google Scholar
38.Vardelle, M., Vardelle, A., Léger, A.C., and Fauchais, P., J. Thermal Spray Technol. 4 (1995) p. 50.CrossRefGoogle Scholar
39.Vardelle, A., Themelis, N.J., Vardelle, M., and Fauchais, P., High Temp. Mater. Proc. 3 (1997) p. 295.CrossRefGoogle Scholar
40.Fukumoto, M., Huang, Y., and Ohwatari, M., in Thermal Spray: Meeting the Challenges of the 21st Century, edited by Coddet, C. (ASM International, Materials Park, OH, 1998) p. 401.Google Scholar
41.Li, C., Li, J.L., Wang, W.B., and Sampath, S., in Thermal Spray: Meeting the Challenges of the 21st Century, edited by Coddet, C. (ASM International, Materials Park, OH, 1998) p. 473.Google Scholar
42.Jiang, X., Wan, Y., Herman, H., and Sampath, S., “Fragmentation of Impinging Molten ZrO2 Droplets on Substrate During Thermal Spray,” submitted for publication, 1999.Google Scholar
43.Huang, Y., Ohwatari, M., and Fukumoto, M., in Proc. 6th Int. Symp. of the Japanese Welding Society (1996) p. 731.Google Scholar
44.Kuroda, S., Dendo, T., and Kitahara, S., J. Thermal Spray Technol. 4 (1995) p. 75.CrossRefGoogle Scholar