Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T15:09:23.942Z Has data issue: false hasContentIssue false

Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the Symposium X presentation given by David A. Weitz (Harvard University) on April 11, 2007, at the Materials Research Society Spring Meeting in San Francisco. The article describes how simple microfluidic devices can be used to control fluid flow and produce a variety of new materials. Based on the concepts of coaxial flow and hydrodynamically focused flow, used alone or in various combinations, the devices can produce precisely controlled double emulsions (droplets within droplets) and even triple emulsions (double emulsions suspended in a third droplet). These structures, which can be created in a single microfluidic device, have various applications such as encapsulants for drugs, cosmetics, or food additives.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Squires, T.M., Quake, S.R., Rev. Mod. Phys. 77, 977 (2005).CrossRefGoogle Scholar
2.Powers, T.R., Zhang, D., Goldstein, R.E., Stone, H.A., Phys. Fluids 10, 1052 (1998).CrossRefGoogle Scholar
3.Tomotika, S., Proc. R. Soc. London, Ser. A 150, 322 (1935).Google Scholar
4.Plateau, J., Acad. Sci. Brux. Mem. 23, 5 (1849).Google Scholar
5.Rayleigh, L., Proc. R. Soc. London 29, 71 (1879).Google Scholar
6.Whitesides, G.M., Stroock, A.D., Phys. Today 54, 42 (2001).CrossRefGoogle Scholar
7.Utada, A.S., Lorenceau, E., Link, D.R., Kaplan, P.D., Stone, H.A., Weitz, D.A., Science 308, 537 (2005).CrossRefGoogle Scholar
8.Ambravaneswaran, B., Subramani, H.J., Phillips, S.D., Basaran, O.A., Phys. Rev. Lett. 93, 034501 (2004).CrossRefGoogle Scholar
9.Clanet, C., Lasheras, J.C., J. Fluid Mech. 383, 307 (1999).CrossRefGoogle Scholar
10.Umbanhowar, P.B., Prasad, V., Weitz, D.A., Langmuir 16, 347 (2000).CrossRefGoogle Scholar
11.Utada, A.S., Fernandez-Nieves, A., Stone, H.A., Weitz, D.A., Phys. Rev. Lett. (2007) accepted.Google Scholar
12.Gañán-Calvo, A.M., Gordillo, J.M., Phys. Rev. Lett. 87, 274501 (2001).CrossRefGoogle Scholar
13.Anna, S.L., Bontoux, N., Stone, H.A., Appl. Phys. Lett. 82, 364 (2003).CrossRefGoogle Scholar
14.Discher, B.M., Won, Y., Ege, D.S., Lee, J.C.-M., Bates, F.S., Discher, D.E., and Hammer, D.A., Science 284, 1143 (1999).CrossRefGoogle Scholar
15.Lorenceau, E., Utada, A.S., Link, D.R., Cristobal, G., Joanicot, M., and Weitz, D.A., Langmuir 21, 9183 (2005).CrossRefGoogle Scholar
16.Hayward, R.C., Utada, A.S., Dan, N., Weitz, D.A., Langmuir 22, 4457 (2006).CrossRefGoogle Scholar
17.Nelson, D.R., Nano Lett. 2, 1125 (2002).CrossRefGoogle Scholar
18.Martinez, C., Kim, J.-W., Marquez, M., Weitz, D., “Encapsulation of Yeast Cells in Alginate Hydrogels Created from Monodisperse Double Emulsion Drops,” presented at MRS Spring 2007 Meeting (San Francisco, April 11, 2007) paper P5.1.Google Scholar