Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T01:32:59.535Z Has data issue: false hasContentIssue false

Doping and Charging in Colloidal Semiconductor Nanocrystals

Published online by Cambridge University Press:  03 May 2012

Get access

Extract

Modern semiconductor technology has been enabled by the ability to control the number of carriers (electrons and holes) that are available in the semiconductor crystal. This control has been achieved primarily with two methods: doping, which entails the introduction of impurity atoms that contribute additional carriers into the crystal lattice; and charging, which involves the use of applied electric fields to manipulate carrier densities near an interface or junction. By controlling the carriers with these methods, the electrical properties of the semiconductor can be precisely tailored for a particular application. Accordingly, doping and charging play a major role in most modern semiconductor devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kastner, M.A.Phys. Today 46 (1993) p.24.CrossRefGoogle Scholar
2.Ashoori, R.C.Nature 379 (1996) p.413.CrossRefGoogle Scholar
3.Nirmal, M. and Brus, L.E.Acc. Chem. Res. 32 (1999) p.407.CrossRefGoogle Scholar
4.Alivisatos, A.P.Science 271 (1996) p.933.CrossRefGoogle Scholar
5.Eychmuller, A.J. Phys. Chem. B 104 (2000) p.6514.CrossRefGoogle Scholar
6.For example, see Bimberg, D.Grundmann, M. and Ledentsov, N.N.MRS Bull. 23 (2) (1998) p.31.CrossRefGoogle Scholar
7.Murray, C.B.Norris, D.J. and Bawendi, M.G.J.Am. Chem. Soc. 115 (1993) p.8706.CrossRefGoogle Scholar
8.Murray, C.B.Kagan, C.R. and Bawendi, M.G.Annu. Rev. Mater. Sci. 30 (2000) p.545.CrossRefGoogle Scholar
9.Vlasov, Yu. A.Yao, N. and Norris, D.J.Adv. Mater. 11 (1999) p.165.3.0.CO;2-3>CrossRefGoogle Scholar
10.Wang, Y.Herron, N.Moller, K. and Bein, T.Solid State Commun. 77 (1991) p.33.CrossRefGoogle Scholar
11.Bhargava, R.N.Gallagher, D.Hong, X. and Nurmikko, A.Phys. Rev. Lett. 72 (1994) p. 416.CrossRefGoogle Scholar
12.Khosravi, A.A.Kundu, M.Jatwa, L.Deshpande, S.K.Bhagwat, U.A.Sastry, M. and Kulkami, S.K.Appl. Phys. Lett. 67 (1995) p.2702.CrossRefGoogle Scholar
13.Bhargava, R.N.Gallagher, D. and Welker, T.J.Lumin. 60 (1994) p.275.CrossRefGoogle Scholar
14.Awschalom, D.D. and Kikkawa, J.M.Phys. Today 52 (1999) p.33.CrossRefGoogle Scholar
15.Sooklal, K.Cullum, B.S.Angel, S.M. and Murphy, C.J.J. Phys. Chem. 100 (1996) p. 4551.CrossRefGoogle Scholar
16.Levy, L.Hochepied, J.F. and Pileni, M.P.J.Phys. Chem. 100 (1996) p.18322.CrossRefGoogle Scholar
17.Counio, G.Esnouf, S.Gacoin, T. and Boilot, J.-P.J.Phys. Chem. 100 (1996) p.20021.CrossRefGoogle Scholar
18.Hoffman, D.M.Meyer, B.K.Ekimov, A.I.Merkulov, I.A.Efros, A.L.Rosen, M.Couino, G.Gacoin, T. and Boilot, J.P.Solid State Commun. 114 (2000) p.547.CrossRefGoogle Scholar
19.Mikulec, F.V.Kuno, M.Bennati, M.Hall, D.A.Griffin, R.G. and Bawendi, M.G.J. Am. Chem. Soc. 122 (2000) p.2532.CrossRefGoogle Scholar
20.Norris, D.J.Yao, N.Charnock, F.T. and Kennedy, T.A.Nano Lett. 1 (2001) p.3.CrossRefGoogle Scholar
21.Suyver, J.F.Wuister, S.F.Kelly, J.J. and Meijerink, A.Phys. Chem. Chem. Phys. 2 (2000) p.5445.CrossRefGoogle Scholar
22.Hines, M.A. and Guyot-Sionnest, P., J. Phys. Chem. B 102 (1998) p.3655.CrossRefGoogle Scholar
23.Chiang, C.K.Druy, M.A.Gau, S.G.Heeger, A.J.Louis, E.J.MacDiarmid, A.G.Park, Y.W. and Shirakawa, H.J. Am. Chem. Soc. 100 (1978) p.1013.CrossRefGoogle Scholar
24.Shim, M. and Guyot-Sionnest, P., Nature 407 (2000) p.981.CrossRefGoogle Scholar
25.Shim, M.Wang, C. and Guyot-Sionnest, P., J.Phys. Chem. B 105 (2001) p.2369.CrossRefGoogle Scholar
26.Norris, D.J.Sacra, A.Murray, C.B. and Bawendi, M.G.Phys. Rev. Lett. 72 (1994) p.2612.CrossRefGoogle Scholar
27.Khurgin, J., Appl. Phys. Lett. 62 (1993) p.1390.CrossRefGoogle Scholar
28.Guyot-Sionnest, P. and Hines, M.A.Appl. Phys. Lett. 72 (1998) p.686.CrossRefGoogle Scholar
29.Shim, M.Shilov, S.V.Braiman, M.S. and Guyot-Sionnest, P., J. Phys. Chem. B 104 (2000) p.1494.CrossRefGoogle Scholar
30.Ginger, D.S.Dhoot, A.S.Finlayson, C.E. and Greenham, N.C.Appl. Phys. Lett. 77 (2000) p.2816.CrossRefGoogle Scholar
31.Shim, M. “Chemical Strategies Towards Understanding Electronic Processes in Zero-Dimensional Materials,” PhD dissertation, University of Chicago, 2001.Google Scholar
32.Wang, C.Shim, M. and Guyot-Sionnest, P., Science 291 (2001) p.2390.CrossRefGoogle Scholar
33.Chepic, D.I.Efros, A.L.Ekimov, A.I.Ivanov, M.G.Kharchenko, V.A.Kudryavtsev, I.A. and Yazeva, T.V.J.Lumin. 47 (1990) p.113.CrossRefGoogle Scholar
34.Efros, A.L.Kharchenko, V.A. and Rosen, M.Solid State Commun. 93 (1995) p.281.CrossRefGoogle Scholar
35.Guyot-Sionnest, P., Shim, M.Matranga, C. and Hines, M.A.Phys. Rev. B 60 (1999) p.R2181.CrossRefGoogle Scholar
36.Klimov, V.I.Mikhailovsky, A.A.McBranch, D.W.Leatherdale, C.A. and Bawendi, M.G.Science 287 (2000) p.1011.CrossRefGoogle Scholar
37.Bruchez, M.Moronne, M.Gin, P.Weiss, S. and Alivisatos, A.P.Science 281 (1998) p. 2013.CrossRefGoogle Scholar
38.Chan, W.C.W. and Nie, S.Science 281 (1998) p.2016.CrossRefGoogle Scholar
39.Colvin, V.L.Schlamp, M.C. and Alivisatos, A.P.Nature 370 (1994) p.354.CrossRefGoogle Scholar
40.Dabbousi, B.O.Bawendi, M.G.Onitsuka, O. and Rubner, M.F.Appl. Phys. Lett. 66 (1995) p.1316.CrossRefGoogle Scholar
41.Woo, W. and Bawendi, M.G. (unpublished manuscript).Google Scholar