Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T10:43:59.543Z Has data issue: false hasContentIssue false

Dielectric elastomers: Stretching the capabilities of energy harvesting

Published online by Cambridge University Press:  12 March 2012

Roy D. Kornbluh
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Ron Pelrine
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Harsha Prahlad
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Annjoe Wong-Foy
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Brian McCoy
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Susan Kim
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Joseph Eckerle
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Tom Low
Affiliation:
SRI International, Menlo Park, CA 94025, USA; [email protected]
Get access

Abstract

Stretchable electronics can go beyond what might commonly be considered “electronics.” They can exploit their inherent elasticity to enable new types of transducers that convert between electrical energy and mechanical energy. Dielectric elastomer actuators are “stretchable capacitors” that can offer muscle-like strain and force response to an applied voltage. As generators, dielectric elastomers offer the promise of energy harvesting with few moving parts. Power can be produced simply by stretching and contracting a relatively low-cost rubbery material. This simplicity, combined with demonstrated high energy density and high efficiency, suggests that dielectric elastomers are promising for a wide range of energy-harvesting applications. Indeed, dielectric elastomers have been demonstrated to harvest energy from human walking, ocean waves, flowing water, blowing wind, pushing buttons, and heat engines. While the technology is promising and advances are being made, there are challenges that must be addressed if dielectric elastomers are to be a successful and economically viable energy-harvesting technology. These challenges include developing materials and packaging that sustain a long lifetime over a range of environmental conditions, designing the devices that stretch the elastomer material uniformly, and system issues such as practical and efficient energy-harvesting circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bar-Cohen, Y., Ed., Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges, 2nd ed. (SPIE Press, Bellingham, WA, 2004).Google Scholar
2.Carpi, F., Kiil, H.-E., Kornbluh, R., Sommer-Larsen, P., Alici, G., in Proceedings of Actuators, Borgmann, H., Ed. (2010), pp. 405417.Google Scholar
3.Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J., Science 287 (5454), 836 (2000).CrossRefGoogle Scholar
4.Kornbluh, R., Pelrine, R., Pei, Q., Oh, S., Joseph, J., Proc. SPIE, Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD) 3987, 51 (2000).Google Scholar
5.Brochu, P., Pei, Q., Macromol. Rapid Commun. 31, 10 (2010).CrossRefGoogle Scholar
6.Carpi, F., DeRossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., Dielectric Elastomers as Electromechanical Transducers. Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier Press, Amsterdam, The Netherlands, 2008).Google Scholar
7.Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S., Proc. SPIE, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (EAPAD) 4329, 148 (2001).Google Scholar
8.Ashley, S., Scientific American 289 (4), 52 (2003).CrossRefGoogle Scholar
9.Chiba, S., Waki, M., Kornbluh, R., Pelrine, R., Proc. of SPIE 6927, Electroactive Polymer Actuators and Devices (EAPAD) 692715 (2008).Google Scholar
10.Prahlad, H., Kornbluh, R., Pelrine, R., Stanford, S., Eckerle, J., Oh, S., Proceedings of ISSS 2005 International Conference on Smart Materials Structures and Systems, SA-100-SA-107 (Bangalore, India, 2005).Google Scholar
11.Graf, C., Maas, J., Schapeler, D., Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 764217–1 (2010).Google Scholar
12.Graf, C., Maas, J., Schapeler, D., 10th IEEE International Conference on Solid Dielectrics (2010), pp. 752–756.Google Scholar
13.Pelrine, R., Kornbluh, R., Joseph, J., Sens. Actuators, A 64, 74 (1998).CrossRefGoogle Scholar
14.Carpi, F., DeRossi, D., Kornbluh, R., Pelrine, R., Somer-Larsen, P., Dielectric Elastomers as Electromechanical Transducers. Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier Press, Amsterdam, The Netherlands, 2008), chap. 4.Google Scholar
15.Kofod, G., McCarthy, D.N., Stoyanov, H., Kollosche, M., Risse, S., Ragusch, H., Rychkov, D., Dansachmuller, M., Wache, R., Proc. SPIE 7642, 76420J (2010), doi:10.1117/12.847281.CrossRefGoogle Scholar
16.Koh, S.J.A., Keplinger, C., Li, T., Bauer, S., Suo, Z., IEEE/ASME Trans. Mechatron. 16, 33 (2011).CrossRefGoogle Scholar
17.Carpi, F., DeRossi, D., Kornbluh, R., Pelrine, R., Somer-Larsen, P., Dielectric Elastomers as Electromechanical Transducers. Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier Press, Amsterdam, The Netherlands, 2008), chap. 7.Google Scholar
18.Benslimane, M., Kiil, H.-E., Tryson, M.J., Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 2010, 764231 (2010).Google Scholar
19.Kornbluh, R., in Carpi, F., DeRossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., Dielectric Elastomers as Electromechanical Transducers. Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier Press, Amsterdam, The Netherlands, 2008), chap. 8.Google Scholar
20.Pelrine, R., Prahlad, H., in Carpi, F., DeRossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (Eds.), Dielectric Elastomers as Electromechanical Transducers. Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier Press, Amsterdam, The Netherlands, 2008), chap. 15.Google Scholar
21.Jean-Mistral, C., Basrour, S., Chaillout, J.-J., Smart Mater. Struct. 19, 085012 (2010).CrossRefGoogle Scholar
22.Liu, Y., Ren, K.L., Hofmann, H.F., Zhang, Q., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (12), 2411 (2005).Google Scholar
23.Kornbluh, R., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S., Eckerle, J., Low, T., Proc. SPIE, 797605 (2011), doi:10.1117/12.882367.Google Scholar
24.Paradiso, J.A., Starner, T., IEEE Pervasive Computing 4 (1), 18 (2005).CrossRefGoogle Scholar
25.Electric Power Research Institute, Ocean Tidal and Wave Energy, Renewable Energy Technical Assessment Guide (TAG-RE 1010489, 2005).Google Scholar
26.U.S. Department of Energy. Mapping and Assessment of the United States Ocean Wave Energy Resource (EPRI, Palo Alto, California), 2011.Google Scholar
27.Kornbluh, R., Wong-Foy, A., Pelrine, R., Prahlad, H., McCoy, B., MRS Proceedings: 1271-JJ03-01 (2010), doi: 10.1557/PROC-1271-JJ03-01.Google Scholar