Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:13:24.277Z Has data issue: false hasContentIssue false

Deriving hierarchical complexity from simplistic colloidal templates

Published online by Cambridge University Press:  08 September 2016

Mark A. Snyder*
Affiliation:
Department of Chemical and Biomolecular Engineering, Lehigh University, USA; [email protected]
Get access

Abstract

Establishing strategies for high-resolution micrometer to subnanometer structural control is an essential feature of any versatile materials design paradigm. Colloidal crystal (CC) templating not only establishes tunable replica pore topologies, but interfacial- and confinement-mediated phenomena extend its impact for tailoring properties such as pore hierarchy, topological diversity, and macroscopic morphology, as well as nucleation, growth, and crystallinity. Coupled with emerging strategies for “single-pot” template-replica co-assembly and efforts to expand the accessible materials palette, CC-templating offers promise for application-driven, rational materials design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Su, B.-L., Sanchez, C., Yang, X.-Y., in Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science, Su, B.-L., Sanchez, C., Yang, X.-Y., Eds. (Wiley-VCH, Weinheim, Germany, 2012), pp. 327.Google Scholar
Trogadas, P., Ramani, V., Strasser, P., Fuller, T.F., Coppens, M.-O., Angew. Chem. Int. Ed. 55, 122 (2016).Google Scholar
Corma, A., Chem. Rev. 97, 2373 (1997).CrossRefGoogle Scholar
Davis, M.E., Nature 417, 813 (2002).Google Scholar
Slater, A.G., Cooper, A.I., Science 348, 988 (2015).Google Scholar
Wan, Y., Zhao, D.Y., Chem. Rev. 107, 2821 (2007).Google Scholar
Lu, A.H., Schuth, F., Adv. Mater. 18, 1793 (2006).Google Scholar
Ryoo, R., Joo, S.H., Jun, S., J. Phys. Chem. B 103, 7743 (1999).Google Scholar
Cychosz, K.A., Guo, X., Fan, W., Cimino, R., Gor, G.Y., Tsapatsis, M., Neimark, A.V., Thommes, M., Langmuir 28, 12647 (2012).Google Scholar
Vogel, N., Retsch, M., Fustin, C.-A., del Campo, A., Jonas, U., Chem. Rev. 115, 6265 (2015).Google Scholar
Petkovich, N.D., Stein, A., in Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy and Life Science, Su, B.-L., Sanchez, C., Yang, X.-Y., Eds. (Wiley-VCH, Weinheim, Germany, 2012), pp. 55129.Google Scholar
Petkovich, N.D., Stein, A., Chem. Soc. Rev. 42, 3721 (2013).Google Scholar
Phillips, K.R., England, G.T., Sunny, S., Shirman, E., Shirman, T., Vogel, N., Aizenberg, J., Chem. Soc. Rev. 45, 281 (2016).Google Scholar
Stein, A., Li, F., Denny, N.R., Chem. Mater. 20, 649 (2008).Google Scholar
Stein, A., Rudisill, S.G., Petkovich, N.D., Chem. Mater. 26, 259 (2014).CrossRefGoogle Scholar
Fang, B., Kim, J.H., Kim, M.S., Yu, J.S., Acc. Chem. Res. 46, 1397 (2013).Google Scholar
Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
Davis, T.M., Snyder, M.A., Krohn, J.E., Tsapatsis, M., Chem. Mater. 18, 5814 (2006).CrossRefGoogle Scholar
Fan, W., Snyder, M.A., Kumar, S., Lee, P.S., Yoo, W.C., McCormick, A.V., Penn, R.L., Stein, A., Tsapatsis, M., Nat. Mater. 7, 984 (2008).CrossRefGoogle Scholar
Yokoi, T., Sakamoto, Y., Terasaki, O., Kubota, Y., Okubo, T., Tatsumi, T., J. Am. Chem. Soc. 128, 13664 (2006).Google Scholar
Snyder, M.A., Lee, J.A., Davis, T.M., Scriven, L.E., Tsapatsis, M., Langmuir 23, 9924 (2007).Google Scholar
Fang, B., Kim, M.-S., Kim, J.H., Lim, S., Yu, J.-S., J. Mater. Chem. 20, 10253 (2010).Google Scholar
Kim, M.H., Im, S.H., Park, O.O., Adv. Funct. Mater. 15, 1329 (2005).Google Scholar
Singh, G., Pillai, S., Arpanaei, A., Kingshott, P., Adv. Funct. Mater. 21, 2556 (2011).Google Scholar
Vermolen, E.C.M., Kuijk, A., Filion, L.C., Hermes, M., Thijssen, J.H.J., Dijkstra, M., van Blaaderen, A., Proc. Natl. Acad. Sci. U.S.A. 106, 16063 (2009).Google Scholar
Kung, S.-C., Chang, C.-C., Fan, W., Snyder, M.A., Langmuir 30, 11802 (2014).Google Scholar
Kuroda, Y., Sakamoto, Y., Kuroda, K., J. Am. Chem. Soc. 134, 8684 (2012).Google Scholar
Fu, M., Zhao, A.L., He, D.W., Wang, Y.S., Chem. Mater. 26, 3084 (2014).Google Scholar
Rudisill, S.G., Hein, N.M., Terzic, D., Stein, A., Chem. Mater. 25, 745 (2013).CrossRefGoogle Scholar
Rudisill, S.G., Shaker, S., Terzic, D., Le Maire, R., Su, B.L., Stein, A., Inorg. Chem. 54, 993 (2015).Google Scholar
Fu, M., Zhou, J., Li, B., Huang, X., Wang, Y., Li, L., J. Mater. Chem. 18, 5986 (2008).Google Scholar
Fu, M., Zhou, J., Xiao, Q.F., Li, B., Zong, R.L., Chen, W., Zhang, J., Adv. Mater. 18, 1001 (2006).Google Scholar
Yang, P.D., Deng, T., Zhao, D.Y., Feng, P.Y., Pine, D., Chmelka, B.F., Whitesides, G.M., Stucky, G.D., Science 282, 2244 (1998).CrossRefGoogle Scholar
Li, F., Wang, Z., Ergang, N.S., Fyfe, C.A., Stein, A., Langmuir 23, 3996 (2007).Google Scholar
Song, L., Feng, D., Fredin, N.J., Yager, K.G., Jones, R.L., Wu, Q., Zhao, D., Vogt, B.D., ACS Nano 4, 189 (2010).Google Scholar
Huang, E., Rockford, L., Russell, T.P., Hawker, C.J., Nature 395, 757 (1998).Google Scholar
Zheng, X., Lv, Y., Kuang, Q., Zhu, Z., Long, X., Yang, S., Chem. Mater. 26, 5700 (2014).Google Scholar
Zhang, Z., Zuo, F., Feng, P., J. Mater. Chem. 20, 2206 (2010).Google Scholar
Crossland, E.J.W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J.A., Snaith, H.J., Nature 495, 215 (2013).Google Scholar
Yonemoto, B.T., Guo, Q., Hutchings, G.S., Yoo, W.C., Snyder, M.A., Jiao, F., Chem. Commun. 50, 8997 (2014).Google Scholar
Yoon, S.B., Chai, G.S., Kang, S.K., Yu, J.S., Gierszal, K.P., Jaroniec, M., J. Am. Chem. Soc. 127, 4188 (2005).Google Scholar
Jiao, Y., Han, D., Liu, L., Ji, L., Guo, G., Hu, J., Yang, D., Dong, A., Angew. Chem. Int. Ed. 54, 5727 (2015).Google Scholar
Kim, J.-H., Kim, J.-H., Choi, K.-H., Yu, H.K., Kim, J.H., Lee, J.S., Lee, S.-Y., Nano Lett. 14, 4438 (2014).Google Scholar
Tian, Z., Snyder, M.A., Langmuir 30, 12411 (2014).Google Scholar
Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H., Aizenberg, J., Proc. Natl. Acad. Sci. U.S.A. 107, 10354 (2010).Google Scholar
Mishchenko, L., Hatton, B., Kolle, M., Aizenberg, J., Small 8, 1904 (2012).CrossRefGoogle Scholar
Vasquez, Y., Kolle, M., Mishchenko, L., Hatton, B.D., Aizenberg, J., ACS Photonics 1, 53 (2013).CrossRefGoogle Scholar
Guo, W.H., Wang, M., Xia, W., Dai, L.H., Langmuir 29, 5944 (2013).Google Scholar
Mandlmeier, B., Minar, N.K., Feckl, J.M., Fattakhova-Rohlfing, D., Bein, T., J. Mater. Chem. A 2, 6504 (2014).CrossRefGoogle Scholar
Kubrin, R., do Rosario, J.J., Lee, H.S., Mohanty, S., Subrahmanyam, R.P., Smirnova, I., Petrov, A., Petrov, A.Y., Eich, M., Schneider, G.A., ACS Appl. Mater. Interfaces 5, 13146 (2013).CrossRefGoogle Scholar
Jiao, Y., Han, D., Ding, Y., Zhang, X., Guo, G., Hu, J., Yang, D., Dong, A., Nat. Commun. 6, 6420 (2015).Google Scholar
Chen, H., Wydra, J., Zhang, X., Lee, P.-S., Wang, Z., Fan, W., Tsapatsis, M., J. Am. Chem. Soc. 133, 12390 (2011).Google Scholar
Lee, P.-S., Zhang, X., Stoeger, J.A., Malek, A., Fan, W., Kumar, S., Yoo, W.C., Al Hashimi, S., Penn, R.L., Stein, A., Tsapatsis, M., J. Am. Chem. Soc. 133, 493 (2011).Google Scholar
Li, L., Jiao, X., Chen, D., Lotsch, B.V., Li, C., Chem. Mater. 27, 7601 (2015).Google Scholar
Cho, H.J., Dornath, P., Fan, W., ACS Catal. 4, 2029 (2014).Google Scholar
Retsch, M., Jonas, U., Adv. Funct. Mater. 23, 5381 (2013).Google Scholar