Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T01:02:13.024Z Has data issue: false hasContentIssue false

Degradable, Multifunctional Cardiovascular Implants: Challenges and Hurdles

Published online by Cambridge University Press:  31 January 2011

Friedrich Jung
Affiliation:
Center for Biomaterial Development and Berlin-Brandenburg Center for Regenerative Therapies, GKSS Research Center, Kantstr. 55, 14513 Teltow, Germany; e-mail [email protected].
Christian Wischke
Affiliation:
Center for Biomaterial Development and Berlin-Brandenburg Center for Regenerative Therapies, GKSS Research Center, Kantstr. 55, 14513 Teltow, Germany; e-mail at [email protected].
Andreas Lendlein
Affiliation:
Institute of Polymer Research, GKSS Research Center, Kantstr. 55, 14513 Teltow, Germany; tel. 49-3328-352-450; and e-mail [email protected].
Get access

Abstract

Polymer-coated and polymer-based cardiovascular implants are essential constituents of modern medicine and will proceed to gain importance with the demographic changes toward a society of increasing age-related morbidity. Based on the experiences with implants such as coronary or peripheral stents, which are presently widely used in clinical medicine, several properties of the next generation of cardiovascular implants have been envisioned that could be fulfilled by multifunctional polymers. The challenge is to combine tailored mechanical properties and rapid endothelialization with controlled drug release in order to modulate environmental cells and tissue. Additionally, degradability and sensitivity to external stimuli are useful in several applications. A critical function in terms of clinical complications is the hemocompatibility. The design of devices with improved hemocompatibility requires advanced in vitro test setups as discussed in depth in this article. Finally, degradable, multifunctional shape-memory polymers are introduced as a promising family of functional polymers that fulfill several requirements of modern implants and are of high relevance for cardiovascular application (e.g., stent technology). Such multifunctional polymers are a technology platform for future cardiovascular implants enabling induced autoregeneration in regenerative therapies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mason, C., Dunnill, P., Regen. Med. 2, 753 (2007).CrossRefGoogle Scholar
2.Mason, C., Dunnill, P., Regen. Med. 3, 1 (2008).CrossRefGoogle Scholar
3.Lutolf, M.P., Gilbert, P.M., Blau, H.M., Nature 462, 433 (2009)CrossRefGoogle Scholar
4.Weigel, T., Schinkel, G., Lendlein, A., Expert Rev. Med. Devices 3, 835 (2006).CrossRefGoogle Scholar
5.Shastri, V.P., Lendlein, A., Adv. Mater. 21, 3231 (2009).CrossRefGoogle Scholar
6.Rickert, D., Scheithauer, M.O., Coskun, S., Lendlein, A., Kelch, S., Franke, R.P.. Biomed. Tech. (Berl) 51, 116 (2006).CrossRefGoogle Scholar
7.Rickert, D., Scheithauer, M.O., Coskun, S., Kelch, S., Lendlein, A., Franke, R.P.. Clin. Hemorheol. Microcirc. 36, 301 (2007).Google Scholar
8.Rickert, D., Lendlein, A., Schmidt, A.M., Kelch, S., Roehlke, W., Fuhrmann, R., Franke, R.P., J. Biomed. Mater. Res. Part B, Appl. Biomater. 67, 722 (2003).CrossRefGoogle Scholar
9.Rickert, D., Lendlein, A., Kelch, S., Fuhrmann, R., Franke, R.P., Biomed. Tech. (Berl) 47, 285 (2002).CrossRefGoogle Scholar
10.Rickert, D., Moses, M.A., Lendlein, A., Kelch, S., Franke, R.P., Clin. Hemorheol. Microcirc. 28, 175 (2003).Google Scholar
11.Rickert, D., Lendlein, A., Peters, I., Moses, M.A., Franke, R.P., Eur. Arch. Otorhinolaryngol. 263, 215 (2006).CrossRefGoogle Scholar
12.Binzen, E., Rickert, D., Kelch, S., Fuhrmann, R., Clin. Hemorheol. Microcirc. 28, 183 (2003).Google Scholar
13.Binzen, E., Lendlein, A., Kelch, S., Rickert, D., Franke, R.P., Clin. Hemorheol. Microcirc. 30, 283 (2004).Google Scholar
14.Hiebl, B., Rickert, D., Fuhrmann, R., Jung, F., Lendlein, A., Franke, R.P., Mater. Res. Soc. Symp. Proc. 1140, 143 (2009).Google Scholar
15.Peek, G.J., Firmin, R.K., ASAIO J. 45, 250 (1999).CrossRefGoogle Scholar
16.Salzman, E.W., Merrill, E.W., Kent, K.C., in Hemostasis and Thrombosis: Basic Principles and Clinical Practice, Colman, R.W., Hirsh, J., Marder, V.J., Salzman, E.W., Eds. (Lippincott Company, Philadelphia, 1999).Google Scholar
17.Braune, S., Lange, M., Richau, K., Lützow, K., Weigel, T., Jung, F., Lendlein, A.. Clin. Hemoreol. Microcirc. 2010, in press.Google Scholar
18.Schneck, D.J., in Biomedical Engineering Fundamentals, Bronzino, J.D. Ed. (Taylor & Francis, Boca Raton, FL, 2006) pp. 1–1–12.Google Scholar
19.Brewster, L.P., Bufallino, D., Ucuzian, A., Greisler, H.P., Biomaterials 28, 5028 (2007).CrossRefGoogle Scholar
20.Joner, M., Finn, A.V., Farb, A., Mont, E.K., Kolodgie, F.D., Ladich, E., Kutys, R., Skorija, K., Gold, H.K., Virmani, R., J. Am. Coll. Cardiol. 48, 193 (2006).CrossRefGoogle Scholar
21.Veith, F.J., Stoney, R.J., J. Vasc. Surg. 3, 104 (1986).CrossRefGoogle Scholar
22.Langer, R., Tirrell, D.A., Nature 428, 487 (2004).Google Scholar
23.Kelch, S., Choi, N.Y., Wang, Z.G., Lendlein, A., Adv. Eng. Mater. 10, 494 (2008).Google Scholar
24.Jung, F., Bach, R., Mrowietz, C., Seyfert, U., Franke, R.P., Biomed. Tech. (Berl.) 46, 200 (2001).Google Scholar
25.Baumgartner, H.R., Schweiz. Med. Wochenschr. 106, 1367 (1976).Google Scholar
26.Turitto, V.T., Muggli, R., Baumgartner, H.R., Ann. N.Y. Acad. Sci. 283, 284 (1977).CrossRefGoogle Scholar
27.White, J.G., Escolar, G., Platelets 11, 56 (2000).Google Scholar
28.Baskurt, O.K., Boynard, M., Cokelet, G.C., Connes, P., Cooke, B.M., Forconi, S., Liao, F., Hardeman, M.R., Jung, F., Meiselman, H.J., Nash, G., Nemeth, N., Neu, B., Sandhagen, B., Shin, S., Thurston, G., Wautier, J.L., Clin. Hemorheol. Microcirc. 42, 75 (2009).Google Scholar
29.Sweeny, J.M., Gorog, D.A., Fuster, V., Nat. Rev. Cardiol. 6, 273 (2009).CrossRefGoogle Scholar
30.Seyfert, U.T., Jung, F., Clin. Lab. 45, 623 (1999).Google Scholar
31.Latza, R., Koscielny, J., Radtke, H., Pruβ, A., Baumann-Baretti, B., Bläsi, U., Kiesewetter, H., Jung., F., Infusionsther. Transfusionsmed. 27, 94 (2000).Google Scholar
32.Breddin, K., Ziemen, M., Bauer, O., Herrmann, W., Schaudinn, L., Schlosser, U., Winterhagen, A., Krzywanek, H.J., Thromb. Res. 19, 621 (1980).Google Scholar
33.Vienken, J., Med. Device Technol. 18, 12 (2007).Google Scholar
34.Breddin, K., Grun, H., Krzywanek, H.J., Schremmer, W.P., Thromb. Haemost. 35, 669 (1976).Google Scholar
35.Bach, R., Jung, F., Kohsiek, I., Ozbek, C., Spitzer, S., Scheller, B., Dyckmans, J., Schieffer, H., Thromb. Res. 74 (Suppl. 1), S55 (1994).Google Scholar
36.Jung, F., Mrowietz, C., Seyfert, U.T., Grewe, R., Franke, R.P., Clin. Hemorheol. Microcirc. 28, 189 (2003).Google Scholar
37.Schmid-Schönbein, H., Rieger, H., Fischer, T., Angiology 31, 301 (1980).CrossRefGoogle Scholar
38.Mrowietz, C., Franke, R.P., Seyfert, U.T., Park, J.W., Jung, F., Clin. Hemorheol. Microcirc. 32, 89 (2005).Google Scholar
39.Hiebl, B., Lützow, K., Lange, M., Jung, F., Seifert, B., Klein, F., Weigel, T., Kratz, K., Lendlein, A., J. Biotechnol. 148, 76 (2010).Google Scholar
40.Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., Padmanaban, K., Kuehnl, P., Thromb. Res. 99, 577 (2000).Google Scholar
41.Biehl, V., Wack, T., Winter, S., Seyfert, U.T., Breme, J., Biomol. Eng. 19, 97 (2002).Google Scholar
42.Blackshear, P.L., Bartelt, K.W., Forstrom, R.J., Ann. N.Y. Acad. Sci. 283, 270 (1977).Google Scholar
43.Reininger, A.J., Hämostaseologie 27, 247 (2007).Google Scholar
44.Born, G.V., Richardson, P.D., J. Membr. Biol. 57, 87 (1980).Google Scholar
45.Morgenstern, E., Ruf, A., Patscheke, H., Blood Coagul. Fibrinolysis 1, 543 (1990).CrossRefGoogle Scholar
46.Du, X., Ginsberg, M.H., Thromb. Haemost. 78, 96 (1997).Google Scholar
47.Siedlecki, C.A., Lestini, B.J., Kottke-Marchant, K.K., Eppell, S.J., Wilson, D.L., Marchant, R.E., Blood 88, 2939 (1996).Google Scholar
48.Baier, R.E., Dutton, R.C., J. Biomed. Mater. Res. 3, 191 (1969).Google Scholar
49.Slack, S.M., Bohnert, J.L., Horbettm, T.A., Ann. N.Y. Acad. Sci. 516, 223 (1987).Google Scholar
50.Broberg, M., Nygren, H., J. Biomed. Mater. Res. A 66, 403 (2003).CrossRefGoogle Scholar
51.Matschke, K., Tugtekin, S.M., Kappert, U., Jung, F., Park, J.W., Knaut, M., Herz 2, 201 (2004).CrossRefGoogle Scholar
52.Lendlein, A., Kelch, S., Mat. Sci. Forum 492–493, 219 (2005).Google Scholar
53.Behl, M., Razzaq, M.Y., Lendlein, A., Adv. Mater., 2010, DOI: 10.1002/adma.200904447.Google Scholar
54.Wischke, C., Lendlein, A., Pharm. Res. 27, 527 (2010).CrossRefGoogle Scholar
55.Wykrzykowska, J.J., Onuma, Y., Serruys, P.W., Expert Opin. Drug Deliv. 6, 113 (2009).CrossRefGoogle Scholar
56.Behl, M., Lendlein, A., Soft Matter 3, 58 (2007).CrossRefGoogle Scholar
57.Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A., Gall, K., Biomaterials 28, 2255 (2007).Google Scholar
58.Su, S.-H., Recent Patents on Engineering 1, 244 (2007).Google Scholar
59.Bellin, I., Kelch, S., Langer, R., Lendlein, A., Proc. Natl. Acad. Sci. U.S.A. 103, 18043 (2006).Google Scholar
60.Behl, M., Lendlein, A., J. Mater. Chem. 20, 3335 (2010).Google Scholar
61.Baer, G.M., Wilson, T.S., Small, W., Hartman, J., Benett, W.J., Matthews, D.L., Maitland, D.J., J. Biomed. Mater. Res. Part B, Appl. Biomater. 90B, 421 (2009).CrossRefGoogle Scholar
62.Lendlein, A., Schmidt, A.M., Langer, R., Proc. Natl. Acad. Sci. U.S.A. 98, 842 (2001).Google Scholar
63.Kelch, S., Steuer, S., Schmidt, A.M., Lendlein, A., Biomacromolecules 8, 1018 (2007).CrossRefGoogle Scholar
64.Alteheld, A., Feng, Y., Kelch, S., Lendlein, A., Angew. Chem. Int. Ed. Engl. 44, 1188 (2005).Google Scholar
65.Choi, N.Y., Lendlein, A., Soft Matter 3, 901 (2007).Google Scholar
66.Lendlein, A., Behl, M., Hiebl, B., Wischke, C., Expert Rev. Med. Dev. 7, 357 (2010).Google Scholar
67.Lendlein, A., Langer, R., Science 296, 1673 (2002).CrossRefGoogle Scholar
68.Lendlein, A., Schmidt, A.M., Schroeter, M., Langer, R., J. Polym. Sci. A, Polym. Chem. 43, 1369 (2005).Google Scholar
69.Lendlein, A., Zotzmann, J., Feng, Y., Alteheld, A., Kelch, S., Biomacromolecules 10, 975 (2009).CrossRefGoogle Scholar
70.Zotzmann, J., Alteheld, A., Behl, M., Lendlein, A., J. Mater. Sci. Mater. Med. 20, 1815 (2009).CrossRefGoogle Scholar
71.Feng, Y.K., Behl, M., Kelch, S., Lendlein, A., Macromol. Biosci. 9, 45 (2009).CrossRefGoogle Scholar
72.Behl, M., Ridder, U., Feng, Y., Kelch, S., Lendlein, A., Soft Matter 5, 676 (2009).Google Scholar
73.Wischke, C., Neffe, A.T., Lendlein, A., Adv. Polym. Sci. 226, 177 (2010).Google Scholar
74.Wischke, C., Neffe, A.T., Steuer, S., Lendlein, A., J. Control. Release 138, 243 (2009).CrossRefGoogle Scholar
75.Neffe, A.T., Hanh, B.D., Steuer, S., Lendlein, A., Adv. Mater. 21, 3394 (2009).CrossRefGoogle Scholar
76.Nagahama, K., Ueda, Y., Ouchi, T., Ohya, Y., Biomacromolecules 10, 1789 (2009).CrossRefGoogle Scholar
77.van den Heuvel, M., Sorop, O., van Beusekom, H.M., van der Giessen, W.J., Minerva Cardioangiol. 57, 629 (2009).Google Scholar
78.Frost & Sullivan, N39F-54 Report (2008).Google Scholar