Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-21T21:47:06.816Z Has data issue: false hasContentIssue false

Defects and Diffusion in Amorphous Alloys

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Since 1959 when P. Duwez showed at Caltech that Au-Si alloys could be quenched into a glassy state, there has been much interest in elucidating the nature of these amorphous materials. Certainly part of the motivation for studying amorphous alloys derives from their potential technological value: they are characterized by high hardness, corrosion and oxidation resistance, and high magnetic permeabilites and electrical resistivities but an equally strong motivation is simply that they are interesting materials. Scientific curiosity is stimulated by such fundamental questions as: What is their structure? Can defects be defined within this structure? What are the possible mechanisms of atomic transport? In addition, amorphous alloys provide a paradigm of a dense metastable structure, and how atomic transport can take place in such systems without transforming to more stable configurations is not well understood. Yet, as materials formed by nonequilibrium processing, e.g., nanocrystals, superlattices, rapidly solidified and ion-beam-modified materials, etc., find their way into technology, this question becomes increasingly germane. Ironically, much of the renewed interest in diffusion in amorphous alloys has been stimulated by the discovery, also at Caltech, of the solid-state amorphizing reaction, where multilayers of crystalline metal films transform to amorphous alloys by solid-state diffusion, rather than vice versa.

Type
Point Defects Part I
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, e.g., Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworth, London, 1983).CrossRefGoogle Scholar
2.Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51 (1983) p. 415.CrossRefGoogle Scholar
3.Gupta, D., Tu, K.N., and Asai, R.W., Phys. Rev. Lett. 35 (1975) p. 796.CrossRefGoogle Scholar
4.Cantor, B. and Cahn, R.W., in Ref. 1, p. 387.Google Scholar
5.Limoge, Y., in Diffusion in Materials, edited by Laskar, A.L., Bocquet, J.L., Brebec, G., and Monty, C. (Kluwer Academic Publishers, the Netherlands, 1990) p. 6Ol.Google ScholarPubMed
6.Adda, Y., Brebec, G., Gupta, R.P., and Limoge, Y., Mater. Sci. Forum (Trans Tech, Switzerland, 1987) Vols. 15–18, p. 349.Google Scholar
7.Mehrer, H. and Dörner, W., in Diffusion in Metals and Alloys, Dimeta 88, edited by Kedves, F.J. and Beke, D.L. (Sci Tech Publishers, Liechtenstein, 1990) Vols. 66–69, p. 189.CrossRefGoogle Scholar
8.Cahn, R.W., in Physical Metallurgy, edited by Cahn, R.W. and Haasen, P. (Elsevier, 1983) p. 1779.Google Scholar
9.Bernal, J.D., Proc. R. Soc. London, Ser. A, 280 (1962) p. 299.Google Scholar
10.Polk, D.E., J. Non-Cryst. Solids 5 (1971) p. 365.CrossRefGoogle Scholar
11. See, e.g., Finney, J.L., Proc. R. Soc. London, Ser. A 319 (1979) p. 479.Google Scholar
12.Brandt, E.H., J. Phys. Cond. Mat. 1 (1989) p. 10003.CrossRefGoogle Scholar
13.Cohen, M.H. and Turnbull, D., J. Chem. Phys. 31 (1959) p. 1164.CrossRefGoogle Scholar
14.Brandt, E.H., J. Phys. Cond. Mat. 1 (1989) p. 10003.CrossRefGoogle Scholar
15.Spaepen, F., in Physics of Defects, edited by Balian, R., Kleman, M., and Poirier, J-P. (North Holland, Amsterdam, 1981) p. 133.Google Scholar
16.Kronmüller, H. and Frank, W., Radiat. Effs. and Defs. in Solids 108 (1989) p. 81.CrossRefGoogle Scholar
17.Ahmadzadeh, M. and Cantor, B., J. Non-Cryst. Solids, 43 (1981) p. 189.CrossRefGoogle Scholar
18.Bushow, K.H.J., Solid State Commun. 43 (1982) p. 171.CrossRefGoogle Scholar
19.Barbour, J.C., de Reus, R., van der Gon, A.W. Denier, and Saris, F.W., J. Mater. Res. 2 (1987) p. 168.CrossRefGoogle Scholar
20.Moser, P., Hautojarvi, P., Yli-Kauppila, J., van Zurk, R., and Chamberod, A., Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai (1982) Vol. 1, p. 759.Google Scholar
21.Mihara, T., Otake, S., Fukushima, N., and Doyama, M., J. Phys. F 11 (1981) p. 727.CrossRefGoogle Scholar
22. See, e.g., Nandedkar, R.V. and Tyagi, A.K., in Metallic Glasses, Production, Properties and Applications, edited by Anantharaman, T.R. (Trans Tech, Switzerland, 1984) p. 165.Google Scholar
23.Bennett, C.H., Chaudhari, P., Moruzzi, P., and Steinhardt, P., Philos. Mag. A 40 (1979) p. 485.CrossRefGoogle Scholar
24.Laakkonen, J. and Nieminen, R.M., J. Phys. C 21 (1988) p. 3663.Google Scholar
25.Chaki, T.K. and Li, J.C.M., Philos. Mag. B 51 (1985) p. 557.CrossRefGoogle Scholar
26.Horvath, J. and Mehrer, H., Cryst. Latt. Defects in Amorphous Mater. 13 (1986) p. 15.Google Scholar
27.Hahn, H. and Averback, R.S., Phys. Rev. B. 37 (1988) p. 6533.CrossRefGoogle Scholar
28.Wu, H.M. and Averback, R.S., Appl. Phys. Lett. 56 (1990) p. 2619.CrossRefGoogle Scholar
29.Hoshino, K., Averback, R.S., Hahn, H., and Rothman, S.J., J. Mater. Res. 3 (1988) p. 55.CrossRefGoogle Scholar
30.Nakajima, H., Koiwa, M., Minonishi, Y., and Ono, S., Trans. Jpn. Inst. Met. 24 (1983) p. 655.CrossRefGoogle Scholar
31.Akhtar, D., Cantor, B., and Cahn, R.W., Scr. Metall. 16 (1982) p. 417.CrossRefGoogle Scholar
32.Akhtar, D. and Misra, R.D.K., Scr. Metall. 19 (1985) p. 603.CrossRefGoogle Scholar
33.Sharma, S.K., Banerjee, S., Jain, K., and Jain, A.K., J. Mater. Res. 4 (1989) p. 603.CrossRefGoogle Scholar
34.Hahn, H.. Averback, R.S., and Shyu, H-M., J. Less Comm. Met. 140 (1988) p. 345.CrossRefGoogle Scholar
35.Wu, H.M. and Averback, R.S., unpublished; H.M. Wu, PhD thesis, University of Illinois, 1991.Google Scholar
36.Horvath, J., Pfahler, K., Ulfert, W., Frank, W., and Kronmüller, H., Mater. Sci. Forum (Trans Tech, Switzerland, 1987) Vols. 15–18, p. 523.Google Scholar
37.Kidson, G.V., Philos. Mag. A 44 (1981) p. 341.CrossRefGoogle Scholar
38.Limoge, Y., Mater. Sci. Forum (Trans Tech, Switzerland, 1987) Vols. 15–18, p. 517.Google Scholar
39.Sizmann, R., J. Nucl. Mater. 69/70 (1978) p. 386.CrossRefGoogle Scholar
40.Averback, R.S. and Hahn, H., Phys. Rev. B 37 (1988) p. 10383.CrossRefGoogle Scholar
41.Bøttinger, J., Pampus, K., and Torp, B., Europhys. Lett. 4 (1987) p. 915.CrossRefGoogle Scholar
42.Barbu, A. and Limoge, Y., Acta Metall. 31 (1983) p. 559.CrossRefGoogle Scholar
43.de Reus, R., Vredenberg, A.M., Voorrips, A.C., Tissink, H.C., and Saris, F.W., Nucl. Instrum. and Methods B. 53 (1991) p. 24.CrossRefGoogle Scholar