Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T03:27:06.595Z Has data issue: false hasContentIssue false

Crystal Plasticity from Dislocation Dynamics

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The strength of a material is its ability to withstand an applied load without breaking or changing its shape. The strength of an ideal, defect-free crystal can be very high, but except for rather exotic materials such as micrometer-sized whiskers, crystals will fracture and/or deform plastically under stresses that are well below their ideal strength limits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Orowan, E.Z. Phys. 89 (1934) p.605.CrossRefGoogle Scholar
2Polanyi, M.Z. Phys. 89 (1934) p.85.CrossRefGoogle Scholar
3Taylor, G.I.Proc. R. Soc. London Ser. A 145 (1934) p.362.Google Scholar
4Hirsch, P.B.Horne, R.W. and Whelan, M.J.Philos. Mag. 1 (1956) p.677.CrossRefGoogle Scholar
5Dash, W.C. in Dislocations and Mechanical Properties of Crystals, edited by Fisher, J.C.Johnston, W.G.Thomson, R. and Vreeland, T. Jr (Wiley, New York, 1957) p.57.Google Scholar
6Lepinoux, J. and Kubin, L.P.Scripta Metall. 21 (1987) p.833.CrossRefGoogle Scholar
7Amodeo, R.J. and Ghoniem, N.M.Phys. Rev. B 41 (1990) p.6958.CrossRefGoogle Scholar
8Kubin, L.P. and Canova, G.R.Scripta Metall. Mater. 27 (1992) p.957.CrossRefGoogle Scholar
9Hirth, J.P.Rhee, M. and Zbib, H.M.J.Comput.-Aided Mater. Des. 3 (1996) p.164.CrossRefGoogle Scholar
10Schwarz, K.W.Phys. Rev. Lett. 78 (1997) p.4785.CrossRefGoogle Scholar
11Hirth, J.P. and Lothe, J., Theory of Dislocations (John Wiley & Sons, New York, 1982).Google Scholar
12Rhee, M.Zbib, H.M.Hirth, J.P.Huang, H. and Rubia, T.Diaz de la, Model. Simul. Mater. Sci. Eng. 6 (4)(1998) p.467.CrossRefGoogle Scholar
13Wickham, L.K.Schwarz, K.W. and Stolken, J.S.Phys. Rev. Lett. 83 (1999) p.4574.CrossRefGoogle Scholar
14Kubin, L.P.Devincre, B. and Tang, M.J.Comput.-Aided Mater. Des. 5 (1998) p.31.CrossRefGoogle Scholar
15Devincre, B. and Kubin, L.P.Mater. Sci. Eng., A 234–236 (1997) p.8.CrossRefGoogle Scholar
16Fivel, M.C.Robertson, C.F.Canova, G.R. and Boulanger, L.Acta Mater. 46 (1998) p. 6183.CrossRefGoogle Scholar
17Lemarchand, C.Devincre, B.Kubin, L.P. and Chaboche, J.L. in Multiscale Modelling of Materials, edited by Bulatov, V.V.Rubia, T. Diaz de la, Phillips, R.Kaxiras, E. and Ghoniem, N. (Mater. Res. Soc. Symp. Proc. 538, Warrendale, PA, 1999) p.63.Google Scholar
18Cleveringa, H.H.M.Giessen, E. Van der, and Needleman, A.Int. J. Plasticity 15 (1999) p.837.CrossRefGoogle Scholar
19Yasin, H.Zbib, H.M. and Khaleel, M.A. Mater. Sci. Eng., A (2001) in press.Google Scholar
20Hughes, D.A.Khan, S.M.A.Godfrey, A. and Zbib, H.M. Mater. Sci. Eng., A (2001) in press.Google Scholar
21Shizawa, K. and Zbib, H.M. Mater. Sci. Eng., A (2001) in press.Google Scholar
22Zbib, H.M.Rhee, M.Hirth, J.P. and Rubia, T. Diaz de la, J. Mech. Behav. Mater. 11 (2000) p.251.CrossRefGoogle Scholar
23Rubia, T. Diaz de la, Zbib, H.M.Khraishi, T.A.Wirth, B.D.Victoria, M. and Caturla, M.J.Nature 406 (2000) p.871.CrossRefGoogle Scholar
24Indenbom, V.L. and Lothe, J.Elastic Strain Fields and Dislocation Mobility, edited by Agranovich, V.M. and Maradudin, A.A. Vol.31 of the series Modern Problems in Condensed Matter Sciences (North-Holland, Amsterdam, 1992).Google Scholar
25Tang, M.Fivel, M.C. and Kubin, L.P. Mater. Sci. Eng., A (2001) in press.Google Scholar
26Argon, A.S. (private communication).Google Scholar
27Hirth, J.P.Zbib, H.M. and Lothe, J.Model. Simul. Mater. Sci. Eng. 6 (1998) p.165.CrossRefGoogle Scholar
28Holt, D.J.Appl. Phys. 41 (1970) p.3197.CrossRefGoogle Scholar
29Walgraef, D. and Aifantis, E.C.Int. J. Eng. Sci. 23 (1985) p.1351.CrossRefGoogle Scholar
30Mindlin, R.D.Arch. Rat. Anal. 16 (1964) p.51.CrossRefGoogle Scholar
31Dillon, O.W. and Kratochvil, J.Int. J. Solids Struct. 6 (1970) p.1513.CrossRefGoogle Scholar
32Aifantis, E.C.Trans. ASME J. Eng. Mater. Technol. 106 (1984) p.326.CrossRefGoogle Scholar
33Zbib, H.M. and Aifantis, E.C.Acta Mech. 92 (1992) p.209.CrossRefGoogle Scholar
34Fleck, N.A.Muller, G.M.Ashby, M.F. and Hutchinson, J.W.Acta Metall. Mater. 42 (1994) p.475.CrossRefGoogle Scholar
35Arsenlis, A. and Parks, D.M.Acta Mater. 47 (1999) p.1597.CrossRefGoogle Scholar
36Anthony, K.-H. and Azirhi, A.Int. J.Eng. Sci. 33 (1995) p.2137.CrossRefGoogle Scholar
37Shizawa, K. and Zbib, H.M.Int. J. Plasticity 15 (1999) p.899.CrossRefGoogle Scholar
38Kroner, E.Kontinuumstheorie der Versetzungen und Eigenspanungen (Springer-Verlag, Berlin, 1958).CrossRefGoogle Scholar