Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-21T21:36:42.188Z Has data issue: false hasContentIssue false

Cooperative Electronic and Magnetic Properties of Self-Assembled Monolayers

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Self-assembled monolayers (SAMs) of organic dipolar molecules have new electronic and magnetic properties that result from their organization, despite the relatively weak interaction among the molecules themselves. Here we review the origin of this cooperative effect and summarize work performed on spin selective electron transmission through SAMs. The spin selectivity observed, in some cases, is consistent with a model in which a SAM containing chiral dipolar molecules behaves like a magnetic layer. The magnetic properties result in the SAMs behaving as spin filters, even without applying an external magnetic field to the layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lvov, V.S., Naaman, R., Vager, Z., Tiberkevich, V., Chem. Phys. Lett. 381, 650 (2003).CrossRefGoogle Scholar
2.Cahen, D., Naaman, R., Vager, Z., Adv. Funct. Mater. 15, 1571 (2005).CrossRefGoogle Scholar
3.Ohtomo, A., Hwang, H.Y., Nature 427, 423 (2004).CrossRefGoogle Scholar
4.Huijben, M., Rijnders, G., Blank, D.H.A., Bals, S., Aert, S.V., Verbeeck, J., Tendeloo, G.V., Brinkman, A., Hilgenkamp, H., Nat. Mater. 5, 556 (2006).CrossRefGoogle Scholar
5.Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., Mannhart, J., Science 313, 1942 (2006).CrossRefGoogle Scholar
6.Reyren, N., Thiel, S., Caviglia, A.D., Kourkoutis, L.F., Hammer, G., Richter, C., Schneider, C.W., Kopp, T., d Rüetschi, A.-S., Jaccard, D., Science 317, 1196 (2007).CrossRefGoogle Scholar
7.Herranz, G., Basletic, M., Bibes, M., Carr'et'ero, C., Tafra, E., Jacquet, E., Bouzehouane, K., Deranlot, C., Hamzi'c, A., Broto, J.-M., Phys. Rev. Lett. 98, 216803 (2007);CrossRefGoogle Scholar
Basletic, M., Maurice, J.-L., Carr′et′ero, C., Herranz, G., Copie, O., Bibes, M., Jacquet, E., Bouzehouane, K., Fusil, S., Barth′;el′;emy, A., Nat. Mater. 7, 621 (2008).CrossRefGoogle Scholar
8.Siemons, W., Koster, G., Yamamoto, H., Harrison, W.A., Lucovsky, G., Geballe, T.H., Blank, D.H.A., Beasley, M.R., Phys. Rev. Lett. 98, 196802 (2007).CrossRefGoogle Scholar
9.Willmott, P.R., Pauli, S.A., Herger, R., Schlepütz, C.M., Martoccia, D., Patterson, B.D., Delley, B., Clarke, R., Kumah, D., Cionca, C., Phys. Rev. Lett. 99, 155502 (2007).CrossRefGoogle Scholar
10.Kalabukhov, A., Gunnarsson, R., Börjesson, J., Olsson, E., Claeson, T., Winkler, D., Phys. Rev. B 75, 121404(R) (2007).CrossRefGoogle Scholar
11.Pentcheva, R., Pickett, W.E., Phys. Rev. B 74, 035112 (2006).CrossRefGoogle Scholar
12.Park, M.S., Rhim, S.H., Freeman, A.J., Phys. Rev. B 74, 205416 (2006).CrossRefGoogle Scholar
13.Vager, Z., Naaman, R., Chem. Phys. 281, 305 (2002).CrossRefGoogle Scholar
14.Brinkman, A., Huijben, M., van Zalk, M., Huijben, J., Zeitler, U., Maan, J.C., van der Wiel, W.G., Rijnders, G., Blank, D.H.A., Hilgenkamp, H., Nat. Mater. 6, 493 (2007).CrossRefGoogle Scholar
15.Carmeli, I., Leitus, G., Naaman, R., Reich, S., Vager, Z., J. Chem. Phys. 118, 10372 (2003).CrossRefGoogle Scholar
16.Crespo, P., Litrán, R., Rojas, T.C., Multigner, M., de la Fuente, J.M., Sánchez-López, J.C., García, M.A., Hernando, A., Penadés, S., Fernández, A., Phys. Rev. Lett. 93, 087204 (2004).CrossRefGoogle Scholar
17.Carmeli, I., Skakalova, V., Naaman, R., Vager, Z.Angew. Chem. Int. Ed. 41, 761 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
18.Suda, M., Kameyama, N., Suzuki, M., Kawamura, N., Einaga, Y., Angew. Chem. Int. Ed. 46, 1 (2007).Google Scholar
19.Hernando, A., Crespo, P., Garcia, M.A., Phys. Rev. Lett. 96, 057206 (2006).CrossRefGoogle Scholar
20.Vager, Z., Naaman, R., Phys. Rev. Lett. 92, 087205 (2004).CrossRefGoogle Scholar
21.Yamamoto, Y., Miura, T., Suzuki, M., Kawamura, N., Miyagawa, H., Nakamura, T., Kobayashi, K., Teranishi, T., Hori, H., Phys. Rev. Lett. 93, 116801 (2004);CrossRefGoogle Scholar
Hori, H., Teranishi, T., Nakae, Y., Seino, Y., Miyake, M., Yamada, S., Phys. Lett. A 263, 406 (1999).CrossRefGoogle Scholar
22.Zhong, Z., Kelly, P.J., EPL 84, 27001 (2008).CrossRefGoogle Scholar
23.Campbell, D.M., Farago, P.S., J. Phys. B: At. Mol. Phys. 20, 5133 (1987).CrossRefGoogle Scholar
24.Nolting, C., Mayer, S., Kessler, J., J. Phys. B 30, 5491 (1997).CrossRefGoogle Scholar
25.Ray, K., Ananthavel, S.P., Waldeck, D.H., Naaman, R., Science 283, 814 (1999).CrossRefGoogle Scholar
26.Carmeli, I., Gefen, Z., Vager, Z., Naaman, R., Phys. Rev. B 68, 115418 (2003).CrossRefGoogle Scholar
27.Ray, S.G., Daube, S.S., Leitus, G., Vager, Z., Naaman, R., Phys. Rev. Lett. 96, 036101 (2006).CrossRefGoogle Scholar
28.Skourtis, S.S., Beratan, D.N., Naaman, R., Nitzan, A., Waldeck, D.H., Phys. Rev. Lett. 101, 238103 (2008).CrossRefGoogle Scholar
29.Yeganeh, S., Ratner, M.A., Medina, E., Mujica, V., J. Chem. Phys. 131, 014707 (2009).CrossRefGoogle Scholar
30.Boker, R.D., McConnell, H.M., J. Phys. Chem. 97, 13419 (1993).Google Scholar
31.Möhwald, H., Ann. Rev. Phys. Chem. 41, 441 (1990).CrossRefGoogle Scholar
32.Myagkov, I.V., Mazurina, E.A., Colloids and Surfaces A 89, 198 (2002).Google Scholar
33.MacDonald, J.R., Barlow, C.A. Jr, J. Chem. Phys. 39, 412 (1963).CrossRefGoogle Scholar
34.Taylor, D.M., Bayes, G.F., Phys. Rev. E 49, 1439 (1994).CrossRefGoogle Scholar
35.Iwamoto, M., Mitzutani, Y., Sugimura, A., Phys. Rev. B 54, 8186 (1996).CrossRefGoogle Scholar
36.Wu, C.-X., Iwamoto, M., Phys. Rev. B 55, 10922 (1997).CrossRefGoogle Scholar
37.Natan, A., Kronik, L., Haick, H., Tung, R.T., Adv. Mater. 19, 4103 (2007).CrossRefGoogle Scholar
38.Romaner, L., Heimel, G., Ambrosch-Draxl, C., Zojer, E., Adv. Funct. Mater. 18, 3999 (2008).CrossRefGoogle Scholar
39.Ito, E., Washizu, Y., Hayashi, N., Ishii, H., Matsuie, N., Tsuboi, K., Ouchi, Y., Harima, Y., Yamashita, K., Seki, K., J. Appl. Phys. 92, 7306 (2002).CrossRefGoogle Scholar
40.Liufu, D., Wang, X.S., Tu, D.M., Kao, K.C., J. Appl. Phys. 83, 2209 (1998).CrossRefGoogle Scholar
41.Gershewitz, O., Sukenik, C., Ghabboun, J., Cahen, D., J. Amer. Chem. Soc. 125, 4730 (2003).CrossRefGoogle Scholar
42.Ray, S.G., Cohen, H., Naaman, R., Liu, H., Waldeck, D.H., J. Phys. Chem. B 109, 14064 (2005).CrossRefGoogle Scholar
43.Masino, M., Girlando, A., Soos, Z.G., Chem. Phys. Lett. 369, (2003);Google Scholar
Duran, C., Trolier-McKinstry, S., Messing, G.L., J. Mater. Res. 17, 2399 (2002);CrossRefGoogle Scholar
Luty, T., Cailleau, H., Koshihara, S., Collet, E., Takesada, M., Lemee-Cailleau, M.H., Buron-Le Cointe, M., Nagaosa, N., Tokura, Y., Zienkiewicz, E., Ouladdiaf, B., Europhys. Lett. 59, 619 (2002).CrossRefGoogle Scholar
44.Prange, R., Girvin, S., Eds., The Quantum Hall Effect (Springer, NY, 1987);CrossRefGoogle Scholar
Prange, R.E., Girvin, S.M., Eds., The Quantum Hall Effect, 2nd Edition (Springer-Verlag, NY, 1990).CrossRefGoogle Scholar
45.Pentcheval, R., Pickett, W.E., J. Phys. Condens. Matter 22, 043001 (2010).CrossRefGoogle Scholar
46.Heeper, R., Tjeng, L.H., Sawatzky, G.A., Phys. Rev. B 62, 16046 (2000);Google Scholar
Okamoto, S., Millis, A.J., Nature 428, 630 (2004).CrossRefGoogle Scholar
47.Meier, F., Pescia, D., Phys. Rev. Lett. 47, 374 (1981).CrossRefGoogle Scholar
48.Landau, L.D., Lifshitz, E.M., The Electrodynamics of Continuous Media, 2nd Ed. (Pergamon, Oxford, 1963);Google Scholar
O'Dell, T.H., The Electrodynamics of Magneto-Electric Media (North Holland, Amsterdam, 1970).Google Scholar
49.Lassailly, Y., Drouhin, H.-J., van der Sluijs, A.J., Lampel, G., Phys. Rev. B 50, 13054 (2004).CrossRefGoogle Scholar
50.Ando, T., J. Phys. Soc. Jpn. 69, 1757 (2000).CrossRefGoogle Scholar
51.Kuemmeth, F., Ilani, S., Ralph, D.C., McEuen, P.L., Nature 452, 448 (2008).CrossRefGoogle Scholar
52.Qi, X.-L., Zhang, S.-C., Phys. Today 63, 33 (2010).CrossRefGoogle Scholar