Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T03:13:23.706Z Has data issue: false hasContentIssue false

Colloids under External Control

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The ability of colloids to self-organize through a minimization of their free energy is a direct consequence of their well-defined thermodynamic temperature that manifests itself through the Brownian motion they perform. In this article, it will be shown that through the use of external fields such as electric and magnetic fields, gravity, structured or confining walls, and shear, this self-organization can be directed to make new advanced materials. Moreover, a start has been made toward colloidal model systems to study fundamental questions relating to materials science such as defect structure and dynamics, grain boundaries, wall and confinement effects, and tribology. Finally, we predict that the enhanced insights on how to use external fields will also lead to “smart” materials with properties that can be changed dynamically.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Perrin, J., Brownian Motion and Molecular Reality (Taylor & Francis, London, 1910).Google Scholar
2. MRS Bull. 26 (8) (2001) p. 608.Google Scholar
3. MRS Bull. 23 (10) (1998) p. 21.Google Scholar
4. Velikov, K.P. and Blaaderen, A. van, Langmuir 17 (2001) p. 4779.CrossRefGoogle Scholar
5. Graf, C. and Blaaderen, A. van, Langmuir 18 (2002) p. 524.Google Scholar
6. Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., and Alivisatos, A.P., Nat. Mater. 2 (2003) p. 382; X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos, Nature 404 (2000) p. 59.CrossRefGoogle Scholar
7. Heni, M. and Lowen, H., J. Phys.: Condens. Matter 13 (2001) p. 4675; Phys. Rev. Lett. 85 (2000) p. 3668.Google Scholar
8. Hoogenboom, J.P., Langen-Suurling, A.K. van, Romijn, J., and Blaaderen, A. van, Phys. Rev. Lett. 90 138301 (2003).CrossRefGoogle Scholar
9. Hoogenboom, J.P., Yethiraj, A., Langen-Suurling, A.K. van, Romijn, J., and Blaaderen, A. van, Phys. Rev. Lett. 89 256104 (2002).CrossRefGoogle Scholar
10. Lin, K.H., Crocker, J.C., Prasad, V., Schofield, A., Weitz, D.A., Lubensky, T.C., and Yodh, A.G., Phys. Rev. Lett. 85 (2000) p. 1770.CrossRefGoogle Scholar
11. Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L., Chem. Mater. 11 (1999) p. 2132.Google Scholar
12. Velikov, K.P., Christova, C.G., Dullens, R.P.A., and Blaaderen, A. van, Science 296 (2002) p. 106.Google Scholar
13. Hoogenboom, J.P., Rétif, C., Bres, E. de, Boer, M. van de, Langen-Suurling, A.K. van, Romijn, J., and Blaaderen, A. van, Nano Lett. (2004) accepted for publication.Google Scholar
14. Kitaev, V. and Ozin, G.A., Adv. Mater. 15 (2003) p. 75.Google Scholar
15. Yin, Y.D. and Xia, Y.N., Adv. Mater. 14 (2002) p. 605.3.0.CO;2-N>CrossRefGoogle Scholar
16. Bechinger, C. and Frey, E., J. Phys.: Condens. Matter 13 (2001) p. R321.Google Scholar
17. Yin, Y.D., Lu, Y., Gates, B., and Xia, Y.N., J. Am. Chem. Soc. 123 (2001) p. 8718.Google Scholar
18. Rogach, A.L., Kotov, N.A., Koktysh, D.S., Ostrander, J.W., and Ragoisha, G.A., Chem. Mater. 12 (2000) p. 2721.CrossRefGoogle Scholar
19. Lumsdon, S.O., Kaler, E.W., Williams, J.P., and Velev, O.D., Appl. Phys. Lett. 82 (2003) p. 949.Google Scholar
20. Nadal, F., Argoul, F., Hanusse, P., Pouligny, B., and Ajdari, A., Phys. Rev. E 65 061409 (2002) and references therein.Google Scholar
21. Ristenpart, W.D., Aksay, I.A., and Saville, D.A., Phys. Rev. Lett. 90 128303 (2003).Google Scholar
22. Sullivan, M., Zhao, K., Harrison, C., Austin, R.H., Megens, M., Hollingsworth, A., Russel, W.B., Cheng, Z.D., Mason, T., and Chaikin, P.M., J. Phys.: Condens. Matter 15 (2003) p. S11.Google Scholar
23. Dassanayake, U., Fraden, S., and Blaaderen, A. van, J. Chem. Phys. 112 (2000) p. 3851.Google Scholar
24. Yethiraj, A., Thijssen, J.H.J., Wouterse, A., and Blaaderen, A. van, Adv. Mater. (2004) accepted for publication.Google Scholar
25. Yethiraj, A. and Blaaderen, A. van, Nature 421 (2003) p. 513.Google Scholar
26. Zahn, K. and Maret, G., Phys. Rev. Lett. 85 (2000) p. 3656.Google Scholar
27. Zahn, K., Wille, A., Maret, G., Sengupta, S., and Nielaba, P., Phys. Rev. Lett. 90 155506 (2003).CrossRefGoogle Scholar
28. Grier, D.G., Nature 424 (2003) p. 810.Google Scholar
29. Vossen, D.L.J., Horst, A. van der, Dogterom, M., Visscher, K., and Blaaderen, A. van, unpublished manuscript.Google Scholar
30. Hoogenboom, J.P., Vossen, D.L.J., Faivre-Moskalenko, C., Dogterom, M., and Blaaderen, A. van, Appl. Phys. Lett. 80 (2002) p. 4828.Google Scholar
31. Vossen, D.L.J., Hoogenboom, J.P., Overgaag, K., and Blaaderen, A. van, in Nanopatterning: From Ultralarge-Scale Integration to Biotechnology, edited by Merhari, L. (Mater. Res. Soc. Symp. Proc. 705, Warrendale, PA, 2002) p. Y6.8.2.Google Scholar
32. Brunner, M. and Bechinger, C., Phys. Rev. Lett. 88 248301 (2002).CrossRefGoogle Scholar
33. MacDonald, M.P., Paterson, L., Volke-Sepulveda, K., Arlt, J., Sibbett, W., and Dholakia, K., Science 296 (2002) p. 1101.CrossRefGoogle Scholar
34. Brunner, M., Bechinger, C., Strepp, W., Lobaskin, V., and Grunberg, H.H. von, Europhys. Lett. 58 (2002) p. 926.CrossRefGoogle Scholar
35. Hoogenboom, J.P., Vergeer, P., and Blaaderen, A. van, J. Chem. Phys. 119 (2003) p. 3371.Google Scholar
36. Hoogenboom, J.P., Derks, D., Vergeer, P., and Blaaderen, A. van, J. Chem. Phys. 117 (2002) p. 11320.Google Scholar
37. Amos, R.M., Rarity, J.G., Tapster, P.R., Shepherd, T.J., and Kitson, S.C., Phys. Rev. E 61 (2000) p. 2929.CrossRefGoogle Scholar
38. Sawada, T., Suzuki, Y., Toyotama, A., and Iyi, N., Jpn. J. Appl. Phys., Part 2: Lett. 40 (2001) p. L1226; T. Kanai, T. Sawada, I. Maki, and K. Kitamura, Jpn. J. Appl. Phys., Part 2: Lett. 42 (2003) p. L655.CrossRefGoogle Scholar
39. Paques, M., Imhof, A., Nicolas, Y., and Blaaderen, A. van, European Patent No. EP1312910 (May 21, 2003).Google Scholar
40. Palberg, T. and Biehl, R., Faraday Discuss. 123 (2003) p. 133.CrossRefGoogle Scholar
41. Stancik, E.J., Gavranovic, G.T., Widenbrant, M.J.O., Laschitsch, A.T., Vermant, J., and Fuller, G.G., Faraday Discuss. 123 (2003) p. 145.CrossRefGoogle Scholar
42. Yethiraj, A., Wouterse, A., Groh, B., and Blaaderen, A. van, Phys. Rev. Lett. (2004) accepted for publication.Google Scholar
43. Yao, X.C. and Castro, A., Opt. Lett. 28 (2003) p. 1335.CrossRefGoogle Scholar
44. Hayward, R.C., Saville, D.A., and Aksay, I.A., Nature 404 (2000) p. 56.Google Scholar
45. Mangold, K., Leiderer, P., and Bechinger, C., Phys. Rev. Lett. 90 158302 (2003).Google Scholar
46. Wille, A., Valmont, F., Zahn, K., and Maret, G., Europhys. Lett. 57 (2002) p. 219.CrossRefGoogle Scholar
47. Mertelj, A., Arauz-Lara, J.L., Maret, G., Gisler, T., and Stark, H., Europhys. Lett. 59 (2002) p. 337.Google Scholar
48. Korda, P.T., Taylor, M.B., and Grier, D.G., Phys. Rev. Lett. 89 128301 (2002).Google Scholar
49. Terray, A., Oakey, J., and Marr, D.W.M., Science 296 (2002) p. 1841.CrossRefGoogle Scholar