Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T14:52:52.938Z Has data issue: false hasContentIssue false

Catalysts for the growth of carbon nanotube “forests” and superaligned arrays

Published online by Cambridge University Press:  10 November 2017

Guohai Chen
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Japan; [email protected]
Don N. Futaba
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Japan; [email protected]
Kenji Hata
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Japan; [email protected]
Get access

Abstract

When the size and spacing of catalyst nanoparticles are well controlled on a substrate, carbon nanotubes (CNTs) can grow and assemble into a unique, vertically aligned structure frequently called a “forest.” Long, aligned, and pure CNTs can easily be synthesized in simple or highly complex configurations. First reported in 1996, CNT forests have been shown to be unique and useful forms of CNTs, as they have spurred the development of novel processes and applications and in addition, served as test beds for investigations into CNT growth mechanisms. This article provides an overview of two decades of research in this area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 56 (1991).Google Scholar
Van Noorden, R., Maher, B., Nuzzo, R., Nature 514, 550 (2014).CrossRefGoogle Scholar
Zhang, R.F., Zhang, Y.Y., Zhang, Q., Xie, H.H., Qian, W.Z., Wei, F., ACS Nano 7, 6156 (2013).CrossRefGoogle Scholar
Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., Nature 381, 678 (1996).Google Scholar
Chen, G.H., Futaba, D.N., Kimura, H., Sakurai, S., Yumura, M., Hata, K., ACS Nano 7, 10218 (2013).Google Scholar
Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., Wang, G., Science 274, 1701 (1996).Google Scholar
Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J., Science 283, 512 (1999).Google Scholar
Xu, M., Futaba, D.N., Yumura, M., Hata, K., ACS Nano 6, 5837 (2012).CrossRefGoogle Scholar
Zhong, G.F., Iwasaki, T., Robertson, J., Kawarada, H., J. Phys. Chem. B 111, 1907 (2007).Google Scholar
Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelle, M.L., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E., Nature 388, 756 (1997).CrossRefGoogle Scholar
Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 243, 49 (1995).Google Scholar
Liu, K., Jiang, K.L., Feng, C., Chen, Z., Fan, S.S., Carbon 43, 2850 (2005).Google Scholar
Li, X.S., Cao, A.Y., Jung, Y.J., Vajtai, R., Ajayan, P.M., Nano Lett. 5, 1997 (2005).Google Scholar
Iwasaki, T., Zhong, G.F., Aikawa, T., Yoshida, T., Kawarada, H., J. Phys. Chem. B 109, 19556 (2005).Google Scholar
Puretzky, A.A., Eres, G., Rouleau, C.M., Ivanov, I.N., Geohegan, D.B., Nanotechnology 19, 055605 (2008).Google Scholar
Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).Google Scholar
Feng, C., Liu, K., Wu, J.S., Liu, L., Cheng, J.S., Zhang, Y.Y., Sun, Y.H., Li, Q.Q., Fan, S.S., Jiang, K.L., Adv. Funct. Mater. 20, 885 (2010).CrossRefGoogle Scholar
Huang, H., Liu, C.H., Wu, Y., Fan, S.S., Adv. Mater. 17, 1652 (2005).Google Scholar
Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M., Appl. Phys. Lett. 75, 3129 (1999).Google Scholar
Chen, G.H., Shin, D.H., Iwasaki, T., Kawarada, H., Lee, C.J., Nanotechnology 19, 415703 (2008).Google Scholar
Zhang, M., Fang, S.L., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H., Science 309, 1215 (2005).Google Scholar
Di, J.T., Hu, D.M., Chen, H.Y., Yong, Z.Z., Chen, M.H., Feng, Z.H., Zhu, Y.T., Li, Q.W., ACS Nano 6, 5457 (2012).CrossRefGoogle Scholar
Lu, W., Qu, L.T., Henry, K., Dai, L.M., J. Power Sources 189, 1270 (2009).CrossRefGoogle Scholar
Jiang, Y.Q., Wang, P.B., Zang, X.N., Yang, Y., Kozinda, A., Lin, L.W., Nano Lett. 13, 3524 (2013).Google Scholar
Qu, L.T., Dai, L.M., Stone, M., Xia, Z.H., Wang, Z.L., Science 322, 238 (2008).Google Scholar
Cao, A.Y., Veedu, V.P., Li, X.S., Yao, Z.L., Ghasemi-Nejhad, M.N., Ajayan, P.M., Nat. Mater. 4, 540 (2005).CrossRefGoogle Scholar
Toth, G., Maklin, J., Halonen, N., Palosaari, J., Juuti, J., Jantunen, H., Kordas, K., Sawyer, W.G., Vajtai, R., Ajayan, P.M., Adv. Mater. 21, 2054 (2009).Google Scholar
Xie, R., Zhang, C., van der Veen, M.H., Arstila, K., Hantschel, T., Chen, B., Zhong, G., Robertson, J., Nanotechnology 24, 125603 (2013).Google Scholar
Subramaniam, C., Yamada, T., Kobashi, K., Sekiguchi, A., Futaba, D.N., Yumura, M., Hata, K., Nat Commun. 4, 2202 (2013).Google Scholar
Jiang, K.L., Wang, J.P., Li, Q.Q., Liu, L.A., Liu, C.H., Fan, S.S., Adv. Mater. 23, 1154 (2011).CrossRefGoogle Scholar
Liu, P., Wei, Y., Liu, K., Liu, L., Jiang, K.L., Fan, S.S., Nano Lett. 12, 2391 (2012).Google Scholar
Hata, K., Synthesiology 9, 167 (2016).CrossRefGoogle Scholar
Zeon Corporation, “High-Performance Thermal Pad with Synthesized SGCNTs and Rubber Developed for Mass Production: An Innovative Thermal Interface Material (TIM) to Address Heat Generated by Servers and Power Devices,” http://www.zeon.co.jp/press_e/161110, html. Press release, November 10, 2016.Google Scholar
Zhang, Q., Zhao, M.Q., Huang, J.Q., Nie, J.Q., Wei, F., Carbon 48, 1196 (2010).Google Scholar
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998).Google Scholar
Katagiri, M., Sakuma, N., Suzuki, M., Sakai, T., Sato, S., Hyakushima, T., Nihei, M., Awano, Y., Jpn. J. Appl. Phys. 47, 2024 (2008).Google Scholar
Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A.C., Blackburn, A.M., Wang, K.Y., Robertson, J., Nano Lett. 6, 1107 (2006).Google Scholar
Nessim, G.D., Seita, M., OʼBrien, K.P., Hart, A.J., Bonaparte, R.K., Mitchell, R.R., Thompson, C.V., Nano Lett. 9, 3398 (2009).Google Scholar
Katagiri, M., Sakuma, N., Yamazaki, Y., Suzuki, M., Sato, S., Nihei, M., Sakai, T., Awano, Y., Jpn. J. Appl. Phys. 48, 090205 (2009).Google Scholar
Kimura, H., Futaba, D.N., Yumura, M., Hata, K., J. Am. Chem. Soc. 134, 9219 (2012).CrossRefGoogle Scholar
Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.M., Kern, K., Appl. Phys. Lett. 76, 2071 (2000).Google Scholar
Kim, J.M., Choi, W.B., Lee, N.S., Jung, J.E., Diam. Relat. Mater. 9, 1184 (2000).Google Scholar
Kurachi, H., Uemura, S., Yotani, J., Nagasako, T., Yamada, H., Ezaki, T., Maesoba, T., Nakao, T., Ito, M., Sakurai, A., Saito, Y., Shinohara, H., J. Soc. Inf. Disp. 13, 727 (2005).Google Scholar
Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., Ajayan, P.M., Nature 416, 495 (2002).Google Scholar
Futaba, D.N., Hata, K., Namai, T., Yamada, T., Mizuno, K., Hayamizu, Y., Yumura, M., Iijima, S., J. Phys. Chem. B 110, 8035 (2006).Google Scholar
Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., Iijima, S., Nat. Mater. 5, 987 (2006).Google Scholar
Hayamizu, Y., Yamada, T., Mizuno, K., Davis, R.C., Futaba, D.N., Yumura, M., Hata, K., Nat. Nanotechnol. 3, 289 (2008).Google Scholar
Yamada, T., Makiomoto, N., Sekiguchi, A., Yamamoto, Y., Kobashi, K., Hayamizu, Y., Yomogida, Y., Tanaka, H., Shima, H., Akinaga, H., Futaba, D.N., Hata, K., Nano Lett. 12, 4540 (2012).Google Scholar
De Volder, M., Tawfick, S.H., Park, S.J., Copic, D., Zhao, Z.Z., Lu, W., Hart, A.J., Adv. Mater. 22, 4384 (2010).CrossRefGoogle Scholar
De Volder, M., Park, S., Tawfick, S., Hart, A.J., Nat. Commun. 5, 4512 (2014).CrossRefGoogle Scholar
Jiang, K.L., Li, Q.Q., Fan, S.S., Nature 419, 801 (2002).Google Scholar
Zhang, M., Atkinson, K.R., Baughman, R.H., Science 306, 1358 (2004).CrossRefGoogle Scholar
Xiao, L., Chen, Z., Feng, C., Liu, L., Bai, Z.Q., Wang, Y., Qian, L., Zhang, Y.Y., Li, Q.Q., Jiang, K.L., Fan, S.S., Nano Lett. 8, 4539 (2008).CrossRefGoogle Scholar
Zhou, Y., Azumi, R., Sci. Technol. Adv. Mat. 17, 493 (2016).Google Scholar
Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K., Nat. Nanotechnol. 6, 296 (2011).CrossRefGoogle Scholar
Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M.H., Ogura, M., Okubo, T., Maruyama, S., Chem. Phys. Lett. 385, 298 (2004).Google Scholar
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M., Chem. Phys. Lett. 360, 229 (2002).Google Scholar
Futaba, D.N., Goto, J., Yamada, T., Yasuda, S., Yumura, M., Hata, K., Carbon 48, 4542 (2010).Google Scholar
Chen, G.H., Sakurai, S., Yumura, M., Hata, K., Futaba, D.N., Carbon 107, 433 (2016).CrossRefGoogle Scholar
Izadi-Najafabadi, A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D.N., Hatori, H., Yumura, M., Iijima, S., Hata, K., Adv. Mater. 22, E235 (2010).Google Scholar
Ata, S., Kobashi, K., Yumura, M., Hata, K., Nano Lett. 12, 2710 (2012).Google Scholar
Zeon Corporation, “World’s First Super-Growth Carbon Nanotube Mass Production Plant Opens,” http://www.zeon.co.jp/press_e/151104.html. Press release, November 4, 2015.Google Scholar
Zeon Nano Technology Co., Ltd. “Technology and Application,” http://www.zeonnanotech.jp/en/tech.html.Google Scholar
Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M., J. Phys. Chem. B 106, 2429 (2002).Google Scholar
Li, Y.M., Kim, W., Zhang, Y.G., Rolandi, M., Wang, D.W., Dai, H.J., J. Phys. Chem. B 105, 11424 (2001).Google Scholar
Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., Kauppinen, E.I., Carbon 43, 2251 (2005).Google Scholar
Yamada, T., Namai, T., Hata, K., Futaba, D.N., Mizuno, K., Fan, J., Yudasaka, M., Yumura, M., Iijima, S., Nat. Nanotechnol. 1, 131 (2006).Google Scholar
Chen, G.H., Davis, R.C., Futaba, D.N., Sakurai, S., Kobashi, K., Yumura, M., Hata, K., Nanoscale 8, 162 (2016).Google Scholar
Bedewy, M., Meshot, E.R., Reinker, M.J., Hart, A.J., ACS Nano 5, 8974 (2011).Google Scholar
Bedewy, M., Hart, A.J., Nanoscale 5, 2928 (2013).Google Scholar
Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., Derbyshire, F., Chem. Phys. Lett. 315, 25 (1999).Google Scholar
Gohier, A., Ewels, C.P., Minea, T.M., Djouadi, M.A., Carbon 46, 1331 (2008).Google Scholar
Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B., Nano Lett. 9, 44 (2009).Google Scholar
Kim, S.M., Pint, C.L., Amama, P.B., Zakharov, D.N., Hauge, R.H., Maruyama, B., Stach, E.A., J. Phys. Chem. Lett. 1, 918 (2010).Google Scholar
Sakurai, S., Nishino, H., Futaba, D.N., Yasuda, S., Yamada, T., Maigne, A., Matsuo, Y., Nakamura, E., Yumura, M., Hata, K., J. Am. Chem. Soc. 134, 2148 (2012).Google Scholar
Yang, J.W., Esconjauregui, S., Robertson, A.W., Guo, Y.Z., Hallam, T., Sugime, H., Zhong, G.F., Duesberg, G.S., Robertson, J., Appl. Phys. Lett. 106, 083108 (2015).CrossRefGoogle Scholar
Stadermann, M., Sherlock, S.P., In, J.B., Fornasiero, F., Park, H.G., Artyukhin, A.B., Wang, Y.M., De Yoreo, J.J., Grigoropoulos, C.P., Bakajin, O., Chernov, A.A., Noy, A., Nano Lett. 9, 738 (2009).Google Scholar
Yamada, T., Maigne, A., Yudasaka, M., Mizuno, K., Futaba, D.N., Yumura, M., Iijima, S., Hata, K., Nano Lett. 8, 4288 (2008).Google Scholar