Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T06:25:51.620Z Has data issue: false hasContentIssue false

Biomaterials for Regenerative Medicine

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on a presentation given by Samuel I. Stupp of Northwestern University as part of Symposium X—Frontiers of Materials Research on April 13, 2004, at the Materials Research Society Spring Meeting in San Francisco. Materials designed at the molecular and supramolecular scales to interact with cells, biomolecules, and pharmaceuticals will have a profound impact on technologies targeting the regeneration of body parts. Materials science is a great partner to stem cell biology, genomics, and proteomics in crafting the scaffolds that will effectively regenerate tissues lost to trauma, disease, or genetic defects. The repair of humans should be minimally invasive, and thus the best scaffolds would be liquids programmed to create materials inside our bodies. In this regard, self-assembling materials will play a key role in future technologies. This article illustrates how molecules are designed to assemble into cell scaffolds for human repair and provides examples relevant to brain damage, fractures of the skeleton, spinal cord injuries leading to paralysis, and diabetes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, D.G., Burdick, J.A., and Langer, R., Science 305 (2004) p. 1923.CrossRefGoogle ScholarPubMed
2.Zamir, E. and Geiger, B., J. Cell Sci. 114 (2001) p. 3577.CrossRefGoogle Scholar
3.Cukierman, E., Pankov, R., Stevens, D.R., and Yamada, K.M., Science 294 (2001) p. 1708.CrossRefGoogle Scholar
4.Yamada, K.M. and Geiger, B., Curr. Opin. Cell Biol. 9 (1997) p. 76.CrossRefGoogle Scholar
5.Derynck, R. and Zhang, Y.E., Nature 425 (2003) p. 577.CrossRefGoogle Scholar
6.Hench, L.L. and Polak, J.M., Science 295 (2002) p. 1014.CrossRefGoogle Scholar
7.Griffith, L.G. and Naughton, G., Science 295 (2002) p. 1009.CrossRefGoogle Scholar
8.Shin, H., Jo, S., and Mikos, A.G., Biomaterials 24 (2003) p. 4353.CrossRefGoogle Scholar
9.Boontheekul, T. and Mooney, D.J., Curr. Opin. Biotechnol. 14 (2003) p. 559.CrossRefGoogle Scholar
10.Hirano, Y. and Mooney, D.J., Adv. Mater. 16 (2004) p. 17.CrossRefGoogle Scholar
11.Chamberlain, L.J., Yannas, I.V., Hsu, H.P., Strichartz, G.R., and Spector, M., J. Neurosci. Res. 60 (2000) p. 666.3.0.CO;2-0>CrossRefGoogle Scholar
12.Pierschbacher, M.D. and Ruoshlahti, E., Nature 309 (1984) p. 30.CrossRefGoogle Scholar
13.Hersel, U., Dahmen, C., and Kessler, H., Biomaterials 24 (2003) p. 4385.CrossRefGoogle ScholarPubMed
14.Fussell, G.W. and Cooper, S.L., Biomaterials 25 (2004) p. 2971.CrossRefGoogle Scholar
15.Smith, E., Bai, J., Oxenford, C., Yang, J., Somayaji, R., and Uludag, H., J. Polym. Sci. Part A: Polym. Chem. 41 (2003) p. 3989.CrossRefGoogle Scholar
16.Yousaf, M.N., Houseman, B.T., and Mrksich, M., Proc. Natl. Acad. Sci. USA 98 (2001) p. 5992.CrossRefGoogle Scholar
17.Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacanti, J.P., and Langer, R., J. Biomed. Mater. Res. 27 (1993) p. 183.CrossRefGoogle Scholar
18.Mikos, A.G., Lyman, M.D., Freed, L.E., and Langer, R., Biomaterials 15 (1994) p. 55.CrossRefGoogle Scholar
19.Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R., Winslow, D.N., and Vacanti, J.P., Polymer 35 (1994) p. 1068.CrossRefGoogle Scholar
20.Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, L.P., and Langer, R., Biomaterials 17 (1996) p. 1417.CrossRefGoogle Scholar
21.Hartgerink, J.D., Beniash, E., and Stupp, S.I., Science 294 (2001) p. 1684.CrossRefGoogle Scholar
22.Guler, M.O., Soukasene, S., Hulvat, J.F., and Stupp, S.I., Nano Lett. 5 (2005) p. 249.CrossRefGoogle Scholar
23.Behanna, H.A., Donners, J., Gordon, A.C., and Stupp, S.I., J. Am. Chem. Soc. 127 (2005) p. 1193.CrossRefGoogle Scholar
24.Berndt, P., Fields, G.B., and Tirrell, M., J. Am. Chem. Soc. 117 (1995) p. 9515.CrossRefGoogle Scholar
25.Fields, G.B., Lauer, J.L., Dori, Y., Forns, P., Yu, Y.C., and Tirrell, M., Biopolymers 47 (1998) p. 143.3.0.CO;2-U>CrossRefGoogle Scholar
26.Zhang, S.G., Holmes, T., Lockshin, C., and Rich, A., Proc. Natl. Acad. Sci. USA 90 (1993) p. 3334.CrossRefGoogle Scholar
27.Zhang, S.G., Nat. Biotechnol. 21 (2003) p. 1171.CrossRefGoogle Scholar
28.Israelachvili, J.N., Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar
29.Tsonchev, S., Schatz, G.C., and Ratner, M.A., Nano Lett. 3 (2003) p. 623.CrossRefGoogle Scholar
30.Tsonchev, S., Schatz, G.C., and Ratner, M.A., J. Phys. Chem. B 108 (2004) p. 8817.CrossRefGoogle Scholar
31.Silva, G.A., Czeisler, C., Niece, K.L., Beniash, E., Harrington, D.A., Kessler, J.A., and Stupp, S.I., Science 303 (2004) p. 1352.CrossRefGoogle Scholar
32.Solis, F.J., Stupp, S.I., and de la Cruz, M. Olvera, J. Chem. Phys. 122 054905(2005)CrossRefGoogle Scholar
33.Niece, K.L., Hartgerink, J.D., Donnors, J.J.J.M., and Stupp, S.I., J. Am. Chem. Soc. 125 (2003) p. 7146.CrossRefGoogle Scholar
34.Okano, H., J. Neurosci. Res. 69 (2002) p. 698.CrossRefGoogle Scholar
35.Storch, A. and Schwarz, J., Curr. Opin. Invest. Drugs 3 (2002) p. 774.Google Scholar
36.Mehler, M.F. and Kessler, J.A., Arch. Neurol. 56 (1999) p. 780.CrossRefGoogle Scholar
37.Pincus, D.W., Goodman, R.R., Fraser, R.A.R., Nedergaard, M., and Goldman, S.A., Neurosurgery 42 (1998) p. 858.CrossRefGoogle Scholar
38.Kam, L., Shain, W., Turner, J.N., and Bizios, R., Biomaterials 22 (2001) p. 1049.CrossRefGoogle Scholar
39.Matsuzawa, M., Weight, F.F., Potember, R.S., and Liesi, P., Int. J. Dev. Neurosci. 14 (1996) p. 283.CrossRefGoogle Scholar
40.Powell, S.K., Rao, J., Rogue, E., Nomizu, M., Kuratomi, Y., Yamada, Y., and Kleinman, H.K., J. Neurosci. Res. 61 (2000) p. 302.3.0.CO;2-G>CrossRefGoogle Scholar
41.Cornish, T., Branch, D.W., Wheeler, B.C., and Campanelli, J.T., Mol. Cell. Neurosci. 20 (2002) p. 140.CrossRefGoogle Scholar
42.Chang, J.C., Brewer, G.J., and Wheeler, B.C., Biosens. Bioelectron. 16 (2001) p. 527.CrossRefGoogle Scholar
43.Wheeler, B.C., Corey, J.M., Brewer, G.J., and Branch, D.W., J. Biomech. Eng., Trans. ASME 121 (1999) p. 73.CrossRefGoogle Scholar
44.Lauer, L., Vogt, A., Yeung, C.K., Knoll, W., and Offenhausser, A., Biomaterials 23 (2002) p. 3123.CrossRefGoogle Scholar
45.Thiebaud, P., Lauer, L., Knoll, W., and Offenhausser, A., Biosens. Bioelectron. 17 (2002) p. 87.CrossRefGoogle Scholar
46.Yeung, C.K., Lauer, L., Offenhausser, A., and Knoll, W., Neurosci. Lett. 301 (2001) p. 147.CrossRefGoogle Scholar
47.Kessler, J.A., private communication.Google Scholar