Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-20T17:45:36.317Z Has data issue: false hasContentIssue false

Bioinspired Hierarchical Crystals

Published online by Cambridge University Press:  31 January 2011

Hiroaki Imai
Affiliation:
Yuya Oaki
Affiliation:
Get access

Abstract

In the sophisticated architectures of various biominerals, a multilevel hierarchy of lengths from nanometers to millimeters is commonly observed. In this article, superstructures composed of inorganic crystals associated with organic molecules from carbonate-based biominerals were identified and categorized as mesocrystals, which are composed of crystallographically oriented crystals. For the production of hierarchically structured mesocrystals, two strategies using self-organized growth with organic agents in aqueous solution systems were proposed. Arranged structures of micrometric and nanometric units were induced with an insoluble gel matrix and soluble adsorbable organic molecules, respectively. Consequently, bioinspired hierarchical crystals were successfully achieved by combining the matrix and soluble species.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mann, S., Nature 332, 119 (1988).CrossRefGoogle Scholar
2.Weiner, S., Addadi, L., J. Mater. Chem. 7, 689 (1997).CrossRefGoogle Scholar
3.Stupp, S.I., Braun, P.V., Science 277, 1242 (1997).CrossRefGoogle Scholar
4.Kato, T., Sugawara, A., Hosoda, N., Adv. Mater. 14, 869 (2002).3.0.CO;2-E>CrossRefGoogle Scholar
5.Meldrum, F.C., Int. Mater. Rev. 48, 187 (2003).CrossRefGoogle Scholar
6.Yu, S.-H., Cölfen, H., J. Mater. Chem. 14, 2124 (2004).CrossRefGoogle Scholar
7.Xu, A.-W., Ma, Y., Cölfen, H., J. Mater. Chem. 17, 415 (2007).CrossRefGoogle Scholar
8.Imai, H., Oaki, Y., Kotachi, A., Bull. Chem. Soc. Jpn. 79, 1834 (2006).CrossRefGoogle Scholar
9.Yu, S.-H., Top. Curr. Chem. 271, 79 (2007).CrossRefGoogle Scholar
10.Sommerdijk, N.A.J.M., de With, G., Chem. Rev. 108, 4499 (2008).CrossRefGoogle Scholar
11.Meldrum, F.C., Cölfen, H., Chem. Rev. 108, 4332 (2008).CrossRefGoogle Scholar
12.Oaki, Y., Imai, H., Angew. Chem. Int. Ed. 44, 6571 (2005).CrossRefGoogle Scholar
13.Oaki, Y., Imai, H., Small 2, 66 (2006).CrossRefGoogle Scholar
14.Oaki, Y., Kotachi, A., Miura, T., Imai, H., Adv. Funct. Mater. 16, 1633 (2006).CrossRefGoogle Scholar
15.Watabe, N., J. Ultrastruct. Res. 27, 360 (1965).Google Scholar
16.Calbert, P., Mann, S., J. Mater. Sci. 3, 3801 (1988).CrossRefGoogle Scholar
17.Sarikaya, M., Microsc. Res. Tech. 27, 360 (1994).CrossRefGoogle Scholar
18.Takahashi, K., Yamamoto, H., Onoda, A., Doi, M., Inaba, T., Chiba, M., Kobayashi, A., Taguchi, T., Okamura, T., Ueyama, N., Chem. Commun. 996 (2004).CrossRefGoogle Scholar
19.Li, X., Chang, W.C., Chao, Y.J., Wang, R., Chang, M., Nano Lett. 4, 613 (2004).CrossRefGoogle Scholar
20.Gotliv, B.A., Addadi, L., Weiner, S., Chembiochem 4, 522 (2003).CrossRefGoogle Scholar
21.Bäuerlein, E., Angew. Chem. Int. Ed. 42, 614 (2003).CrossRefGoogle Scholar
22.Schäffer, T.E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D.A., Almqvist, N., Zaremba, C.M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K., Chem. Mater. 9, 1731 (1997).CrossRefGoogle Scholar
23.Fernandez, M.S., Passalacqua, K., Arias, J.I., Arias, J.L., J. Struct. Biol. 148, 1 (2004).CrossRefGoogle Scholar
24.Silyn-Roberts, H., Sharp, R.M., Proc. R. Soc. Lond. B 277, 303 (1986).Google Scholar
25.Feng, Q.L., Zhu, X., Li, H.D., Kim, T.N., J. Cryst. Growth 233, 548 (2001).CrossRefGoogle Scholar
26.Cölfen, H., Mann S. Angew. Chem. Int. Ed. 42, 2350 (2003).CrossRefGoogle Scholar
27.Cölfen, H., Antonietti, M., Angew. Chem. Int. Ed. 44, 5576 (2005).CrossRefGoogle Scholar
28.Niederberger, M., Cölfen, H., Phys. Chem. Chem. Phys. 8, 3271 (2006).CrossRefGoogle Scholar
29.Zhou, L., O'Brien, P., Small 4, 1566 (2008).CrossRefGoogle Scholar
30.Wang, T.X., Verch, A., Börner, H.G., Cölfen, H., Antonietti, M., J. Ceram. Soc. Jpn. 117, 221 (2009).CrossRefGoogle Scholar
31.Wang, T.X., Cölfen, H., Antonietti, M., J. Am. Chem. Soc. 127, 3246 (2005).CrossRefGoogle Scholar
32.Kulak, A.N., Iddon, P., Li, Y., Armes, S.P., Cölfen, H., Paris, O., Wilson, R.M., Meldrum, F.C., J. Am. Chem. Soc. 129, 3729 (2007).CrossRefGoogle Scholar
33.Oaki, Y., Imai, H., Cryst. Growth Des. 3, 711 (2003).CrossRefGoogle Scholar
34.Saito, Y., Ueta, T., Phys. Rev. A. 40, 3408 (1989).CrossRefGoogle Scholar
35.Suda, J., Nakayama, T., Nakahara, A., Matsushita, M., J. Phys. Soc. Jpn. 95, 771 (1996).CrossRefGoogle Scholar
36.Imai, H., Oaki, Y., Angew. Chem. Int. Ed. 43, 1363 (2004).CrossRefGoogle Scholar
37.Oaki, Y., Imai, H., J. Am. Chem. Soc. 126, 9271 (2004).CrossRefGoogle Scholar
38.Kato, T., Suzuki, T., Mamiya, T., Irie, T., Komiyama, M., Supramol. Sci. 5, 411 (1998).CrossRefGoogle Scholar
39.Kato, T., Suzuki, T., Irie, T., Chem. Lett. 186 (2000).CrossRefGoogle Scholar
40.Kotachi, A., Miura, T., Imai, H., Chem. Mater. 16, 3191 (2004).CrossRefGoogle Scholar
41.Kato, T., Adv. Mater. 12, 1543 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
42.Oaki, Y., Imai, H., Adv. Funct. Mater. 15, 1407 (2005).CrossRefGoogle Scholar
43.Oaki, Y., Hayashi, S., Imai, H., Chem. Commun. 2841 (2007).CrossRefGoogle Scholar
44.Grassmann, O., Lömann, P., Chem. Eur. J. 9, 1310 (2003).CrossRefGoogle Scholar
45.Li, H., Estroff, L.A., CrystEngComm 9, 1153 (2007).CrossRefGoogle Scholar