Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T04:07:16.816Z Has data issue: false hasContentIssue false

Bandgap and Defect Engineering for Semiconductor Holographic Materials: Photorefractive Quantum Wells and Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Bandgap engineering of thin semiconductor layers and defect engineering combine to form photorefractive (PR) quantum well structures. PR quantum wells are semi-insulating thin films useful for dynamic holography and other coherent and incoherent optical applications. As materials for thin-film dynamic holography, they have high nonlinear-optical sensitivity and high speed.

The PR effect translates a spatially varying irradiance, from the interference of two or more coherent light beams, into a refractive index grating. The multiple-step PR process begins with photoexcitation of charge carriers, followed by transport and trapping of charge at deep defects. The trapped space-charge generates electric fields that alter the refractive index of the material through the electrooptic effect. The same laser beams that generate the gratings diffract from the gratings, leading to a rich variety of multiple-beam effects, such as two-wave and four-wave mixing.

Because the PR process involves several distinct physical parameters, such as carrier mobility and electrooptic coefficients, optimized performance requires a coincidence of favorable properties in a single material. Rather than relying on coincidence, bandgap engineering of multiple layers of semiconductors provides a way to individually tune the separate material pa rameters. Likewise, defect engineering in semiconductors provides flexibility in the choice of defects, their concentrations, and degree of compensation. Bandgap and defect engineering combined make custom designed PR materials possible.

Type
Photorefractive Materials
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burns, C.A., Phys. Rev. B 32 (1985) p. 1043.CrossRefGoogle Scholar
2.Boyd, G.D., Fox, A.M., Miller, D.A.B., Chirovsky, L.M.F., D'Asaro, L.A., Kuo, J.M., Kopf, R.F., and Lentine, A.L., Appl. Phys. Lett. 57 (1990) p. 1843.CrossRefGoogle Scholar
3.Miller, D.A.B., Chemla, D.S., Damen, T.C., Wood, T.H., Burrus, C.A., Gossard, A.C., and Wiegmann, W., IEEE J. Quantum Electron. QE-21 (1985) p. 1462.CrossRefGoogle Scholar
4.Miller, D.A.B., J. Opt. Quantum Electron. 22 (1990) p. S61.Google Scholar
5.Smith, F.W., Calawa, A.R., Chen, C., Mantra, M.J., and Mahoney, L.J., IEEE Electron. Dev. Lett. EDL-9 (1988) p. 77.CrossRefGoogle Scholar
6.Smith, F.W, Lee, H.W., Diadiuk, V., Hollis, M.A., Calawa, A.R., Gupta, S., Frankel, M., Dykaar, D.R., Mourou, G.A., and Hsiang, T.Y., Appl. Phys. Lett. 54 (1989) p. 890.CrossRefGoogle Scholar
7.Melloch, M.R., Otsuka, N., Mahalingam, K., Chang, C.L., Woodall, J.M., Pettit, C.D., Kirchner, P.D., Cardone, F., Warren, A.C., and Nolte, D.D., J. Appl. Phys. 72 (1992) p. 3509.CrossRefGoogle Scholar
8.Melloch, M.R., Otsuka, N., Woodall, J.M., Warren, A.C., and Freeouf, J.L., in Reference 2, p. 1531.Google Scholar
9.Nolte, D.D., Melloch, M.R., Woodall, J.M., and Ralph, S.E., Appl. Phys. Lett. 62 (1993) p. 1356.CrossRefGoogle Scholar
10.Nolte, D.D., Brubaker, R.M., Melloch, M.R., Woodall, J.M., and Ralph, S.E., Appl. Phys. Lett. 61 (1992) p. 3098.CrossRefGoogle Scholar
11.Miller, D.A.B., Chemla, D.S., Eilenberger, D.J., Smith, P.W., Gossard, A.C., and Tsang, W.T., Appl. Phys. Lett. 41 (1982) p. 679.CrossRefGoogle Scholar
12.Silverberg, Y., Smith, P.W., Miller, D.A.B., Tell, B., Gossard, A.C., and Wiegmann, W., Appl. Phys. Lett. 46 (1985) p. 701.CrossRefGoogle Scholar
13.Partovi, A., Glass, A.M., Olson, D.H., Zydzik, G.J., O'Bryan, H.M., Chiu, T.H., and Knox, W.H., in Reference 9, p. 464.Google Scholar
14.Fox, A.M., Miller, D.A.B., Livescu, G., Cunningham, J.E., and Jan, W.Y., IEEE J. Quantum Electron. 27 (1991) p. 2281.CrossRefGoogle Scholar
15.Partovi, A., Class, A.M., Zydzik, G.J., O'Bryan, H.M., Chiu, T.H., and Knox, W.H., in Reference 9, p. 3088.Google Scholar
16.White, J.O., Cronin-Gollomb, M., Fischer, B., and Yariv, A., Appl. Phys. Lett. 40 (1982) p. 450.CrossRefGoogle Scholar
17.Cronin-Gollomb, M., Fischer, B., White, J.E., and Yariv, A., IEEE J. Quantum Electron. QE-20 (1984) p. 12.CrossRefGoogle Scholar
18.Weiss, S., Sternklar, S., and Fischer, B., Opt. Lett. 12 (1987) p. 114.CrossRefGoogle Scholar
19.Smout, A.M.C. and Eason, R.W., in Reference 18, p. 498.Google Scholar
20.Feinberg, J., Phys. Today 41 (1988) p. 46.CrossRefGoogle Scholar
21.Wang, Q.N., Nolte, D.D., and Melloch, M.R., Appl. Phys. Lett. 59 (1991) p. 256.CrossRefGoogle Scholar
22.Wang, Q.N., Brubaker, R.M., Nolte, D.D., and Melloch, M.R., J. Opt. Soc. Am. B 9 (1992) p. 1626.CrossRefGoogle Scholar
23.Raman, C.V. and Nath, N.S.N., Proc. Indian Acad. Sci. 2 (1935) p. 406.CrossRefGoogle Scholar
24.Moharam, M.G., Gaylord, T.K., and Magnusson, R., Opt. Commun. 32 (1980) p. 19.CrossRefGoogle Scholar
25.Yariv, A. and Yeh, P., Optical Waves in Crystals (John Wiley & Sons, New York, 1984).Google Scholar
26.Wang, Q.N., Nolte, D.D., and Melloch, M.R., Opt. Lett. 16 (1991) p. 1944.CrossRefGoogle Scholar
27.Nolte, D.D., Wang, Q.N., and Melloch, M.R., Appl. Phys. Lett. 58 (1991) p. 2067.CrossRefGoogle Scholar
28.Nolte, D.D., Olson, D.H., Doran, G.E., Knox, W.H., and Glass, A.M., J. Opt. Soc. Am. B 7 (1990) p. 2217.CrossRefGoogle Scholar
29.Brost, G.A., Opt. Commun. 96 (1993) p. 113.CrossRefGoogle Scholar
30.Picoli, G., Gravey, P., Ozkul, C., and Vieux, V., J. Appl. Phys. 66 (1989) p. 3798.CrossRefGoogle Scholar
31.Carrascosa, M., Agullo-Rueda, F., and Agulló-López, F., Appl. Phys. A 55 (1992) p. 25.CrossRefGoogle Scholar
32.Brubaker, R.M., Wang, Q.N., Nolte, D.D., and Melloch, M.R., unpublished.Google Scholar
33.Strohkendl, F.P., Jonathon, J.M.C., and Hellwarth, R.W., Opt. Lett. 11 (1986) p. 312.CrossRefGoogle Scholar
34.Partovi, A., Glass, A.M., Olson, D.H., Zydzik, G.J., Short, K.T., Feldman, R.D., and Austin, R.F., Appl. Phys. Lett. 59 (1991) p. 1832.CrossRefGoogle Scholar
35.Goossen, K.W., Cunningham, J.E., and Han, W.Y., in Reference 2, p. 2582.Google Scholar
36.Roach, W.R., IEEE Trans. Electron. Dev. ED-21 (1974) p. 453.CrossRefGoogle Scholar
37.Nolte, D.D., Opt. Commun. 92 (1992) p. 199.CrossRefGoogle Scholar
38.Partovi, A., Glass, A.M., Chiu, T.H., and Liu, D.T.H., Opt. Lett. 18 (1993) p. 906.CrossRefGoogle Scholar