Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T07:23:32.794Z Has data issue: false hasContentIssue false

Bacterial Nanocellulose as a Renewable Material for Biomedical Applications

Published online by Cambridge University Press:  31 January 2011

Paul Gatenholm
Affiliation:
Wallenberg Wood Science Centre, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE412 96 Göteborg, Sweden; tel. 46-3-17723407; fax 46-3-17723418; and e-mail [email protected].
Dieter Klemm
Affiliation:
Polymet Jena, Technology and Innovation Park, Wildenbruchstraβe 15, D 07745 Jena, Germany; tel. 49-3641-548281; fax 49-3641-548289; and e-mail [email protected].
Get access

Abstract

Nanocellulose, such as that produced by the bacteria Gluconacetobacter xylinus (bacterial cellulose, BC), is an emerging biomaterial with great potential as a biological implant, wound and burn dressing material, and scaffolds for tissue regeneration. BC has remarkable mechanical properties despite the fact that it contains up to 99% water. The water-holding ability is the most probable reason why BC implants do not elicit any foreign body reaction. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. This article describes current and future applications of BC in the biomedical field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Klemm, D., Philipp, B., Heinze, Th., Heinze, U., Wagenknecht, W., Comprehensive Cellulose Chemistry Volume 1 and 2 (Wiley-VCH, Germany, 1998).Google Scholar
2.Klemm, D., Heublein, B., Fink, H.-P., Bohn, A., Angew. Chem. Int. Ed. 44, 3358 (2005).CrossRefGoogle Scholar
3.Klemm, D., Schmauder, H.-P., Heinze, Th., in Biopolymers, Steinbüchel, A., Ed. (Wiley-VCH, Germany, 2002), p. 257.Google Scholar
4.Hon, D.N.-S., Shiraishi, N., Wood and Cellulosic Chemistry 2nd ed. (Marcel Dekker Inc., New York, 2001).Google Scholar
5.Kamide, K., Cellulose and Cellulose Derivatives (Elsevier, The Netherlands, 2005).Google Scholar
6.Zugenmaier, P., Crystalline Cellulose and Cellulose Derivatives (Springer-Verlag, Heidelberg, 2007).Google Scholar
7.Brown, R.M. Jr, Saxena, I.M., Cellulose: Molecular and Structural Biology (Springer, The Netherlands, 2007).CrossRefGoogle Scholar
8.Helenius, G., Bäckdahl, H., Bodin, A., Nanmark, U., Gatenholm, P., Risberg, B., J. Biomed. Mater. Res. A. 76 (2), 431 (2006).CrossRefGoogle Scholar
9.Esguerra, M., Fink, H., Laschke, M.W., Delbro, D., Jeppsson, A., Gatenholm, P., Menger, M.G., Risberg, B., J. Biomed. Mater. Res., Part A. (2009).Google Scholar
10.Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., Uryu, M., J. Mater. Sci. 24, 3141 (1989).CrossRefGoogle Scholar
11.Cannon, R.E., Anderson, S.M., Critical Reviews in Microbiology 17, 435 (1991).CrossRefGoogle Scholar
12.Czaja, W., Krystynowicz, A., Bielecki, S., Brown, R.M. Jr, Biomaterials 27, 145 (2006).CrossRefGoogle Scholar
13.Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M., Biomacromolecules 8, 1 (2007).CrossRefGoogle Scholar
14.Klemm, D., Schumann, D., Kramer, F., Heβler, N., Hornig, M., Schmauder, H.-P., Marsch, S., Adv. Polym. Sci. 205, 49 (2006).CrossRefGoogle Scholar
15.Klemm, D., Schumann, D., Kramer, F., Heβler, N., Koth, D., Sultanova, B., Macromol. Symp. 280, 60 (2009).CrossRefGoogle Scholar
16.Dahman, Y., J. Nanosci. Nanotechnol. 9, 5105 (2009).CrossRefGoogle Scholar
17.Czaja, W., Krystynowicz, A., Bielecki, S., Brown, R.M., Jr., Biomaterials 27, 145 (2006).CrossRefGoogle Scholar
18.Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M., Biomacromolecules 8, 1 (2007).CrossRefGoogle Scholar
19.Brown, M., Saxena, I.M., Cellulose: Molecular and Structural Biology (Springer, The Netherlands, 2007).CrossRefGoogle Scholar
20.Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., Strømme, M., Polymer 48, 7623 (2007).CrossRefGoogle Scholar
21.Bäckdahl, H., Helenius, G., Bodin, A., Johansson, B., Nanmark, U., Risberg, B., Gatenholm, P., Biomaterials 27, 2141 (2006).CrossRefGoogle Scholar
22.Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsura, T., Hikita, H., Handa, K., Adv. Mater. 17, 153 (2005).CrossRefGoogle Scholar
23.Nogi, M., Yano, H., Adv. Mater. 20, 1849 (2009).CrossRefGoogle Scholar
24.Heβler, N., PhD thesis (University of Jena, Germany, 2008).Google Scholar
25.Bodin, A., Bäckdahl, H., Fink, H., Gustafsson, L., Risberg, B., Gatenholm, P., Biotechnol. Bioeng. 97 (2), 425 (2007).CrossRefGoogle Scholar
26.Bodin, A., Ahrenstedt, L., Fink, H., Brumer, H., Risberg, B., Gatenholm, P., Biomacromolecules 8, 3697 (2007).CrossRefGoogle Scholar
27.Bäckdahl, H., Esguerra, M., Delbro, D., Risberg, B., Gatenholm, P., J. Tissue Eng. Regen. Med. 2 (6), 320 (2008).CrossRefGoogle Scholar
28.Bodin, A., Gustafsson, L., Gatenholm, P., J. Biomater. Sci. Polym. Ed. 17 (4), 435 (2006).CrossRefGoogle Scholar
29.Zimmermann, K.A., Sheets, K.T., Fox, R., LeBlanc, J.M., Gatenholm, P., Mater. Sci. Eng., C 29, 1942 (2009).Google Scholar
30.Bodin, A., Concaro, S., Brittberg, M., Gatenholm, P., J. Tissue Eng. Regen. Med. 48, 7623 (2007).Google Scholar
31.Klemm, D., Schumann, D., Udhardt, U., Marsch, S., Prog. Polym. Sci. 26, 1561 (2001).CrossRefGoogle Scholar
32.Wippermann, J., Schumann, D., Klemm, D., Kosmehl, H., Salehi-Gelani, S., Wahlers, T., Eur. J. Vasc. Endovasc. Surg. 37, 592 (2009).CrossRefGoogle Scholar
33.Schumann, D., Wippermann, J., Klemm, D., Kramer, F., Koth, D., Kosmehl, H., Wahlers, T., Salehi-Gelani, S., Cellulose 16, 877 (2009).CrossRefGoogle Scholar
34.2000 Heart and Stroke Statistical Update (American Heart Association, Dallas, TX, 1999).Google Scholar
35.Voorheers, A.B., Jaretski, A., Blakemore, A.H., Ann. Surg. 135, 332 (1952).CrossRefGoogle Scholar
36.Szilagyi, D.E., Elliot, J.P., Smith, R.F., J. Vasc. Surg. 3, 421 (1986).CrossRefGoogle Scholar
37.Sayers, R.D., Raptis, S., Berce, M., Br. J. Surg. 85, 934 (1998).CrossRefGoogle Scholar
38.Greisler, H.P., Ann. Vasc. Surg. 4, 98 (1990).CrossRefGoogle Scholar
39.Mertens, R.A., Ohara, P.J., Hertzer, N.R., J. Vasc. Surg. 21, 782 (1995).CrossRefGoogle Scholar