Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T09:13:29.080Z Has data issue: false hasContentIssue false

Atomic-scale design of radiation-tolerant nanocomposites

Published online by Cambridge University Press:  31 January 2011

M. J. Demkowicz
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected]
P. Bellon
Affiliation:
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; [email protected]
B. D. Wirth
Affiliation:
University of Tennessee, Knoxville, TN 37996, USA; [email protected]
Get access

Abstract

Recent work indicates that materials with nanoscale architectures, such as nanolayered Cu-Nb composites and nanoscale oxide dispersion-strengthened steels, are both thermally stable and offer improved performance under irradiation. Current understanding of the atomic-level response of such materials to radiation yields insights into how controlling composition, morphology, and interface-defect interactions may further enable atomic-scale design of radiation-tolerant nanostructured composite materials. With greater understanding of irradiation-assisted degradation mechanisms, this bottom-up design approach may pave the way for creating the extreme environment—tolerant structural materials needed to meet the world's clean energy demand by expanding use of advanced fission and future fusion power.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, K., J. Nucl. Mater. 100, 149 (1981).CrossRefGoogle Scholar
2. Zhou, R.S., West, E.A., Jiao, Z.J., Was, G.S., J. Nucl. Mater. 395, 11 (2009).CrossRefGoogle Scholar
3. Mansur, L.K., Nucl. Technol. 40, 5 (1978).CrossRefGoogle Scholar
4. Fidleris, V., At. Energ. Rev. 13, 51 (1975).Google Scholar
5. Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., Ukai, S., MRS Bull. 34, 20 (2009).CrossRefGoogle Scholar
6. Guerin, Y., Was, G.S., Zinkle, S.J., MRS Bull. 34, 10 (2009).Google Scholar
7. Zinkle, S.J., Phys. Plasmas 12, 8 (2005).CrossRefGoogle Scholar
8. Olander, D.R., “Fundamental Aspects of Nuclear Reactor Fuel Elements,” (Technical Information Center, Office of Public Affairs, Oak Ridge, TN, 1976).CrossRefGoogle Scholar
9. Was, G.S., Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007).Google Scholar
10. Kang, K.S., Meng, Y.S., Breger, J., Grey, C.P., Ceder, G., Science 311, 977 (2006).CrossRefGoogle Scholar
11. Wigner, E.P., U.S. Atomic Energy Commission, Physics Division (1942).Google Scholar
12. Bacon, D.J., Osetsky, Y.N., Int. Mater. Rev. 47, 233 (2002).CrossRefGoogle Scholar
13. Russell, K.C., Prog. Mater Sci. 28, 229 (1984).CrossRefGoogle Scholar
14. Odette, G.R., Lucas, G.E., JOM 53, 18 (2001).CrossRefGoogle Scholar
15. Martin, G., Phys. Rev. B: Condens. Matter 30, 1424 (1984).CrossRefGoogle Scholar
16. Singh, B.N., Philos. Mag. 29, 25 (1974).CrossRefGoogle Scholar
17. Siegel, R.W., Chang, S.M., Balluffi, R.W., Acta Metall. 28, 249 (1980).CrossRefGoogle Scholar
18. Dollar, M., Gleiter, H., Scripta Metall. 19, 481 (1985).CrossRefGoogle Scholar
19. Inderjeet, K., Mishin, Y., Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion (Wiley, Chichester, NY, 1995).Google Scholar
20. Hoagland, R.G., Kurtz, R.J., Philos. Mag. A 82, 1073 (2002)CrossRefGoogle Scholar
21. Mishin, Y., Asta, M., Li, J., Acta Mater. 58, 1117 (2010).CrossRefGoogle Scholar
22. Schroeder, H., Kesternich, W., Ullmaier, H., Nucl. Eng. Des./Fusion 2, 65 (1985)CrossRefGoogle Scholar
23. Misra, A., Hoagland, R.G., Kung, H., Philos. Mag. 84, 1021 (2004).CrossRefGoogle Scholar
24. Misra, A., Demkowicz, M.J., Zhang, X., Hoagland, R.G., JOM 59, 62 (2007)CrossRefGoogle Scholar
25. Nastasi, M.A., Mayer, J.W., Hirvonen, J.K., Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, NY, 1996).CrossRefGoogle Scholar
26. Hochbauer, T., Misra, A., Hattar, K., Hoagland, R.G., J. Appl. Phys. 98, 123516 (2005).CrossRefGoogle Scholar
27. Zhang, X., Li, N., Anderoglu, O., Wang, H., Swadener, J.G., Hochbauer, T., Misra, A., Hoagland, R.G., Nucl. Instrum. Methods Phys. Res., Sect. B 261, 1129 (2007).CrossRefGoogle Scholar
28. Mitchell, T.E., Lu, Y.C., Griffin, A.J., Nastasi, M., Kung, H., J. Am. Ceram. Soc 80, 1673 (1997).CrossRefGoogle Scholar
29. Demkowicz, M.J., Hoagland, R.G., Int. J. Appl. Mech. 1, 421 (2009).CrossRefGoogle Scholar
30. Demkowicz, M.J., Hoagland, R.G., Hirth, J.P., Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle Scholar
31. Demkowicz, M.J., Wang, J., Hoagland, R.G., in Dislocations in Solids, Hirth, J.P., Ed. (Elsevier, Amsterdam, 2008), Vol. 14, pp. 141Google Scholar
32. Knowles, K.M., Philos. Mag. A 46, 951 (1982).CrossRefGoogle Scholar
33. Kirchheim, R., Acta Mater. 50, 413 (2002).CrossRefGoogle Scholar
34. Detor, A.J., Schuh, C.A., Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
35. Nelson, R.S., Hudson, J.A., Mazey, D.J., J. Nucl. Mater. 44, 318 (1972)CrossRefGoogle Scholar
36. Jaeger, W., Trinkaus, H., J. Nucl. Mater. 205, 394 (1993).CrossRefGoogle Scholar
37. Enrique, R.A., Bellon, P., Phys. Rev. Lett. 84 (2000).CrossRefGoogle Scholar
38. Enrique, R.A., Nordlund, K., Averback, R.S., Bellon, P., J. Appl. Phys. 93, 2917 (2003).CrossRefGoogle Scholar
39. Chee, S.W., Stumphy, B., Vo, N.Q., Averback, R.S., Bellon, P., Acta Mater. 58, 4088 (2010).CrossRefGoogle Scholar
40. Vo, N.Q., Chee, S.W., Schwen, D., Zhang, X., Bellon, P., Averback, R.S., Scripta Mater. (2010), in press.Google Scholar
41. Krasnochtchekov, P., Averback, R.S., Bellon, P., Phys. Rev. B: Condens. Matter 72, 1 (2005).CrossRefGoogle Scholar
42. Averback, R.S., de la Rubia, T. Diaz, Solid State Phys. 51, 281 (1998).CrossRefGoogle Scholar
43. Odette, G.R., Alinger, M.J., Wirth, B.D., Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
44. Ukai, S., Okuda, T., Fujiwara, M., Kobayashi, T., Mizuta, S., Nakashima, H., J. Nucl. Sci. Technol. 39, 872 (2002).CrossRefGoogle Scholar
45. Larson, D.J., Maziasz, P.J., Kim, I.S., Miyahara, K., Scripta Mater. 44, 359 (2001).CrossRefGoogle Scholar
46. Alinger, M.J., Odette, G.R., Hoelzer, D.T., J. Nucl. Mater. 329/333, 382 (2004).CrossRefGoogle Scholar
47. Yamamoto, T., Odette, G.R., Miao, P., Hoelzer, D.T., Bentley, J., Hashimoto, N., Tanigawa, H., Kurtz, R.J., J. Nucl. Mater. 367–370, 399 (2007).CrossRefGoogle Scholar
48. Hoelzer, D.T., Bentley, J., Sokolov, M.A., Miller, M.K., Odette, G.R., Alinger, M.J., J. Nucl. Mater. 367, 166 (2007).CrossRefGoogle Scholar
49. Kim, I.S., Hunn, J.D., Hashimoto, N., Larson, D.L., Maziasz, P.J., Miyahara, K., Lee, E.H., J. Nucl. Mater. 280, 264 (2000).CrossRefGoogle Scholar
50. Odette, G.R., Hoelzer, D.T., J. Nucl. Mater. (2010), In press.Google Scholar
51. Miller, M.K., Russell, K.F., Hoelzer, D.T., J. Nucl. Mater. 351, 261 (2006).CrossRefGoogle Scholar
52. Klimiankou, M., Lindau, R., Moslang, A., J. Cryst. Growth 249, 381 (2003)CrossRefGoogle Scholar
53. Klimiankou, M., Lindau, R., Moslang, A., Micron 36, 1 (2005).CrossRefGoogle Scholar
54. Marquis, E.A., Appl. Phys. Lett. 93, 181904 (2008).CrossRefGoogle Scholar
55. Williams, C.A., Marquis, E.A., Cerezo, A., Smith, G.D.W., J. Nucl. Mater. 400, 37 (2010).CrossRefGoogle Scholar
56. Alinger, M.J., Glade, S.C., Wirth, B.D., Odette, G.R., Toyama, T., Nagai, Y., Hasegawa, M., Mater. Sci. Eng., A 518, 150 (2009).CrossRefGoogle Scholar
57. Bhattacharyya, D., Dickerson, P., Odette, G.R. (2010), in press.Google Scholar
58. Jiang, Y., Smith, J.R., Odette, G.R., Phys. Rev. B 79, 064103 (2009).CrossRefGoogle Scholar
59. Alinger, M.J., Wirth, B.D., Lee, H.J., Odette, G.R., J. Nucl. Mater. 367, 153 (2007).CrossRefGoogle Scholar
60. Fu, C.L., Krcmar, M., Painter, G.S., Chen, X.Q., Phys. Rev Lett. 99, 225502 (2007)CrossRefGoogle Scholar
61. Xu, J., Liu, C.T., Miller, M.K., Chen, H.M., Phys. Rev. B 79, 020204(R) (2009).CrossRefGoogle Scholar
62. Kolluri, K., Demkowicz, M.J., Phys. Rev. B 82, 193404 (2010).CrossRefGoogle Scholar
63. Demkowicz, M.J., Bhattachaaryya, D., Usov, I., Wang, Y.Q., Natasi, M., Misra, A., Appl. Phys. Lett. 97, 161903 (2010).CrossRefGoogle Scholar
64. Lim, S.C.V., Rollett, A.D., Mater. Sci. Eng. A 520, 189 (2009).CrossRefGoogle Scholar