Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T05:29:40.920Z Has data issue: false hasContentIssue false

Atom probe tomography of interfaces in ceramic films and oxide scales

Published online by Cambridge University Press:  08 January 2016

K. Stiller
Affiliation:
Department of Applied Physics, Division of Materials Microstructure, Chalmers University of Technology, Sweden; [email protected]
M. Thuvander
Affiliation:
Department of Applied Physics, Division of Materials Microstructure, Chalmers University of Technology, Sweden; [email protected]
I. Povstugar
Affiliation:
Department of Microstructure Physics and Alloy Design, Max Planck Institute for Iron Research, Germany; [email protected]
P.P. Choi
Affiliation:
Department of Microstructure Physics and Alloy Design, Max Planck Institute for Iron Research, Germany; [email protected]
H.-O. Andrén
Affiliation:
Department of Applied Physics, Division of Materials Microstructure, Chalmers University of Technology, Sweden; [email protected]
Get access

Abstract

Atomic-scale characterization of interfaces in ceramic materials is needed in order to fully understand their electronic, ionic, mechanical, magnetic, and optical properties. The latest development of laser-assisted atom probe tomography (APT), as well as new specimen preparation methods, have opened the realm of ceramics for structural and chemical characterization with high sensitivity and nearly atomic spatial resolution. This article reviews recent APT investigations of interfaces in thin nitride films and thermally grown oxides: TiAlN layers and oxide scales on alumina- and chromia-formers and Zr alloys. The selected examples highlight the role of interfaces in the decomposition of films and in transport processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“Coated Carbide, Cermet, and Ceramic Tool Materials,” in ASM Specialty Handbook: Tool Materials, Davies, J.R., Ed., (ASM International, Materials Park, OH, 1995), pp. 7784.Google Scholar
Lemaignan, C., Motta, A.T., “Zirconium Alloys in Nuclear Applications,” in Materials Science and Technology, A Comprehensive Treatment, Cahn, R.W., Haasen, P., Kramer, E.J., Eds. (VCH, Weinheim, Germany, 1994), vol. 10B.Google Scholar
Schütze, M., Quadakkers, W.J., Eds., Novel Approaches to Improving High-Temperature Corrosion Resistance (Woodhead Publishing, Cambridge, England, 2008).CrossRefGoogle Scholar
Oberdorfer, C., Stender, P., Reinke, C., Schmitz, G., Microsc. Microanal. 13, 342 (2007).Google Scholar
Melmed, A.J., Martinka, M., Girvin, S.M., Sakurai, T., Kuk, Y., Appl. Phys. Lett. 39, 16 (1981).Google Scholar
Sebastian, J.T., Assaban, A., Seidman, D.N., Kooi, B.J., de Hosson, J.T.M., Interface Sci. 9, 199 (2001).CrossRefGoogle Scholar
Sebastian, J.T., Rusing, J., Hellman, O.C., Seidman, D.N., Vriesendrop, W., Kooi, B.J., de Hosson, J.T.M., Ultramicroscopy 89, 203 (2001).Google Scholar
Kluthe, C., Al-Kassab, T., Kirchheim, R., Mater. Sci. Eng. A 353, 112 (2003).Google Scholar
Marquis, E.A., Appl. Phys. Lett. 93, 181904 (2008).CrossRefGoogle Scholar
Mazumder, B., Vella, A., Deconihout, B., Al-Kassab, T., Ultramicroscopy 111, 571 (2011).CrossRefGoogle Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D., Gorman, B.P., Annu. Rev. Mater. Res. 37, 681 (2007).Google Scholar
Kuduz, M., Schmitz, G., Kirchheim, R., Ultramicroscopy 101, 197 (2004).Google Scholar
Kellog, G.L., Tsong, T.T., J. Appl. Phys. 51, 1184 (1980).CrossRefGoogle Scholar
Gordon, L.M., Joester, D., Nature 469, 194 (2011).Google Scholar
Gordon, L.M., Tran, L., Joester, D., ACS Nano 6, 10667 (2012).CrossRefGoogle Scholar
Karlsson, J., Sundell, G., Thuvander, M., Andersson, M., Nano Lett. 14, 4220 (2014).CrossRefGoogle Scholar
Larson, D.J., Alvis, R.L., Lawrence, D.F., Prosa, T.J., Ulfig, R.M., Reinhard, D.A., Clifton, P.H., Gerstl, S.S.A., Bunton, J.H., Lenz, D.R., Kelly, T.F., Stiller, K., Microsc. Microanal. 14, 1254 (2008).Google Scholar
Vella, A., Mazumder, B., Da Costa, G., Deconihout, B., J. Appl. Phys. 110, 044321 (2011).Google Scholar
Hono, K., Ohkubo, T., Chen, Y.M., Kodzuka, M., Oh-ishi, K., Sepehri-Amin, H., Li, F., Kinno, T., Tomiya, S., Kanitani, Y., Ultramicroscopy 111, 576 (2011).CrossRefGoogle Scholar
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K., Todd, R.I., Mater. Today 13, 34 (2010).Google Scholar
Chen, Y.M., Reed, R.C., Marquis, E.A., Scr. Mater. 67, 779 (2012).CrossRefGoogle Scholar
Stiller, K., Viskari, L., Sundell, G., Liu, F., Thuvander, M., Andrén, H.-O., Larson, D.J., Prosa, T., Reinhard, D., Oxid. Met. 79, 227 (2013).Google Scholar
Dong, Y., Motta, A.T., Marquis, E.A., J. Nucl. Mater. 442, 270 (2013).Google Scholar
Chen, Y.M., Reed, R.C., Marquis, E.A., Oxid. Met. 82, 457 (2014).Google Scholar
Viskari, L., Hornqvist, M., Moore, K., Cao, Y., Stiller, K., Acta Mater. 61, 3630 (2013).CrossRefGoogle Scholar
Lozano-Perez, S., Yamada, T., Terachi, T., Schroder, M., English, C.A., Smith, G.D.W., Grovenor, C.R.M., Eyre, B.L., Acta Mater. 57, 5361 (2009).CrossRefGoogle Scholar
Povstugar, I., Choi, P.P., Tytko, D., Ahn, J.P., Raabe, D., Acta Mater. 61, 7534 (2013).Google Scholar
Johnson, L.J.S., Thuvander, M., Stiller, K., Oden, M., Hultman, L., Thin Solid Films 520, 4362 (2012).Google Scholar
Sundell, G., Thuvander, M., Yatim, A.K., Nordin, H., Andrén, H.-O., Corros. Sci. 90, 1 (2015).Google Scholar
Sundell, G., Thuvander, M., Andrén, H.-O., Corros. Sci. 65, 10 (2012).Google Scholar
Sundell, G., Thuvander, M., Andrén, H.-O., J. Nucl. Mater. 456, 409 (2015).Google Scholar
Young, D.J., Nguyen, T.D., Felfer, P., Zhang, J., Cairney, J.M., Scr. Mater. 77, 29 (2014).CrossRefGoogle Scholar
Kim, J.-H., Kim, B.K., Kim, D.-I., Choi, P.P.. Raabe, D., Yi, K.-W., Corros. Sci. 96, 52 (2015).CrossRefGoogle Scholar
Kinno, T., Tomita, M., Ohkubo, T., Takeno, S., Hono, K., Appl. Surf. Sci. 290, 194 (2014).CrossRefGoogle Scholar
Devaraj, A., Colby, R., Hess, W.P., Perea, D.E., Thevuthasan, S., J. Phys. Chem. Lett. 4, 993 (2013).Google Scholar
Vurpillot, F., Houard, J., Vella, A., Deconihout, B., J. Phys. D Appl. Phys. 42, 125502 (2009).Google Scholar
Silaeva, E.P., Arnoldi, L., Karahka, M.L., Deconihout, B., Menand, A., Kreuzer, H.J., Vella, A., Nano Lett. 14, 6066 (2014).Google Scholar
Greiwe, G., Balogh, Z., Schmitz, G., Ultramicroscopy 141, 51 (2014).CrossRefGoogle Scholar
Arnoldi, L., Vella, A., Houard, J., Deconihout, B., Appl. Phys. Lett. 101, 153101 (2012).Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R., Kelly, T.F., Microsc. Microanal. 13, 418 (2007).Google Scholar
Amouyal, Y., Seidman, D.N., Microsc. Microanal. 18, 971 (2012).Google Scholar
Mulholland, M.D., Seidman, D.N., Microsc. Microanal. 17, 950 (2011).Google Scholar
Liu, F., Halvarsson, M., Hellström, K., Svensson, J.E., Johansson, L.G., Oxid. Met. 83, 441 (2015).Google Scholar
Haynes, J.A., Pint, B.A., More, K.L., Zhang, Y., Wright, I.G., Oxid. Met. 58, 513 (2002).CrossRefGoogle Scholar
Unocic, K.A., Pint, B.P., Surf. Coat. Technol. 237, 8 (2013).Google Scholar
Lindgren, M., Panas, I., RSC Adv. 3, 21613 (2013).Google Scholar
Chen, Q., Sundman, B., J. Phase Equilib. 19, 146 (1998).Google Scholar
Moore, K.T., Johnson, W.C., Howe, J.M., Aaronson, H.I., Veblen, D.R., Acta Mater. 50, 943 (2002).Google Scholar
Liu, J., Wu, X., Lennard, W.N., Landheer, D., Dharma-Wardana, M.W.C., J. Appl. Phys. 107, 123510 (2010).CrossRefGoogle Scholar