Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T17:45:20.382Z Has data issue: false hasContentIssue false

Artificially Layered Superconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The study of Artificially Layered Superconductors (ALS) started more than 20 years ago with the search for unusual and/or high temperature superconductivity in a variety of metal-semiconducting layers. Renewed interest was motivated by the advent of novel preparation techniques that allow control of layer thicknesses close to interatomic distances. In this way layered superconductors can be used as model systems to study a variety of physical phenomena, prepare structures with improved properties and discover novel metastable phases which do not exist in nature. Examples of these studies include: a diversity of dimensional transitions, interaction between superconductivity and magnetism, interaction between superconductivity and electron localization, enhancements of critical fields and critical currents, and the study of incommensurate systems.

Recent developments in high temperature ceramic superconductors further increase the importance of studies of Artificially Layered Superconductors. The newly discovered ceramic superconductors are structurally layered and therefore many of their properties will also be determined by this structure. Because of this, particularly in the search for the mechanism of superconductivity, it is important to understand which properties are a consequence of the layered nature of the material and which are due to the presence of some unusual, yet undetermined physical phenomena.

What makes Artificially Layered Superconductors especially attractive for investigation? The main reason rests on the fact that the characteristic lengths which determine the superconducting properties, i.e., the coherence length and penetration depth, are quite long in conventional low temperature superconductors.

Type
Multilayer Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ginzburg, V.L., Sov. Phys. Uspekhi 13 (1970) p. 335.CrossRefGoogle Scholar
2.Cohen, M.H. and Douglas, D.H. Jr., Phys. Rev. Lett. 19 (1967) p. 118.CrossRefGoogle Scholar
3.Allender, D., Bray, J., and Bardeen, J., Phys. Rev. B 7 (1973) p. 1020.CrossRefGoogle Scholar
4.Miller, D.L., Strongin, M., and Kammerer, O.F., Phys. Rev. B 13 (1986) p. 4834.CrossRefGoogle Scholar
5.Strongin, M., Kammerer, O.F., Crow, J.E., Parks, R.D., Douglass, D.H. Jr., and Jensen, M.A., Phys. Rev. Lett. 21 (1968) p. 1320.CrossRefGoogle Scholar
6. See for instance, Schuller, I.K., Tachiki, M., and Callen, E., ONRFE Sci. Info. Bull. 13 (1988) p. 1.Google Scholar
7. See for instance, Schuller, I.K., in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988).Google Scholar
8. For a recent review see Jin, B.Y. and Ketterson, J.B., Adv. Phys. 38 (1989) p. 189.CrossRefGoogle Scholar
9. See for instance, Matijasević, V. and Beasley, M. in Metallic Superlattices, edited by Shinjo, T. and Takada, T. (Elsevier, Amsterdam, 1987).Google Scholar
10. For a review of sputtering of artificially layered structures see for instance Huggins, H.A. and Gurvitch, M., J. Vac. Sci. Technol. A1 (1983) p. 77.CrossRefGoogle Scholar
11. See for instance, Molecular Beam Epitaxy by Herman, M.A. and Sitter, H. (Springer-Verlag, Berlin, 1984).Google Scholar
12. See MRS Bulletin focus issues on deposition processes: November and December, 1988.Google Scholar
13.Heinz, B. and Hegner, F., Elektronik-Anzeiger 10 (1983) p. 26.Google Scholar
14.Sevenhans, W., Locquet, J.P., and Bruynseraede, Y., Rev. Sci. Instrum. 57 (1986) p. 937.CrossRefGoogle Scholar
15. See for instance, Spaepen, F., in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988).Google Scholar
16. See for instance, McWhan, D.B., in Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York, 1988).Google Scholar
17.Locquet, J.P., Neerinck, D., Vanderstraeten, H., Sevenhans, W., van Haesendonck, C., Bruynseraede, Y., Homma, H. and Schuller, I.K., Jpn. J. Appl. Phys. 26 (1987) p. 1431.CrossRefGoogle Scholar
18. See for instance, Lepetre, Y., Schuller, I.K., Rasigni, G., Rivoira, R., Philip, R., and Dhez, P., SPIE Proc. 563 (1985) p. 258.CrossRefGoogle Scholar
19. See for instance, Baxter, C.S. and Stobs, W.M., Appl. Phys. Lett. 48 (1986) p. 1202.CrossRefGoogle Scholar
20. See for instance, Petford-Long, A.K., Stearns, M.B., Chang, C.H., Nurt, S.R., Stearns, D.G., Ceglio, N.M., and Hawryluk, A.M., J. Appl. Phys. 61 (1987) p. 1422.CrossRefGoogle Scholar
21.de Gennes, P.G. and Guyon, E., Phys. Lett. 3 (1963) p. 168; P.G. de Gennes, Rev. Mod. Phys. 36 (1964) p. 225; N.R. Werthammer, Phys. Rev. 132 (1963) p. 2440.CrossRefGoogle Scholar
22.Lawrence, W. and Doniach, S., Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, edited by Kanda, E., (Academic, Tokyo, 1971) p. 361.Google Scholar
23.Crow, J.E., Strongin, M., Thompson, R.S., and Kammerer, O.F., Phys. Lett. 30A (1969) p. 161; L.R. Testardi and L.F. Mattheis, Phys. Rev. Lett. 41 (1978) p. 1612.CrossRefGoogle Scholar
24.Wolf, S.A., Kennedy, J.J., and Nisenoff, M., J. Vac. Sci. Technol. 13 (1976) p. 145; A.F. Mayadas, R.B. Laibowitz, and J.J. Cuomo, J. Appl. Phys. 43 (1972) p. 1287.CrossRefGoogle Scholar
25.Banerjee, I., Yang, Q.S., Falco, C.M., and Schuller, I.K., Solid State Commun. 41 (1982) p. 805.CrossRefGoogle Scholar
26.Ruggiero, S.T., Barbee, T.W. Jr., and Beasley, M.R., Phys. Rev. B 26 (1982) p. 4894.CrossRefGoogle Scholar
27.Auvil, P.R. and Ketterson, J.B., Proc. of the 18th International Conference on Low Temperature Physics, Kyoto, 1987, Jpn. J. Appl. Phys. 26 (1987) Supplement 26-3, p. 1461.CrossRefGoogle Scholar
28.Takahashi, S. and Tachiki, M., Phys. Rev. B 33 (1986) p. 4620.CrossRefGoogle Scholar
29.Raffy, H. and Guyon, E., Physica 108B (1981) p. 947.Google Scholar
30.Yetter, W.E., Krame, E.J., and Ast, D.G., J. Low Temp. Phys. 49 (1982) p. 2271.CrossRefGoogle Scholar
31.Broussard, P.R. and Geballe, T.H., Phys. Rev. B 37 (1988) p. 68.CrossRefGoogle Scholar
32.Murduck, J.M., Capone, D.W. II, Schuller, I.K., Foner, S., and Ketterson, J.B., Appl. Phys. Lett. 52 (1989) p. 504.CrossRefGoogle Scholar
33.Ami, S. and Maki, K., Prog. Theor. Phys. 53 (1975) p. 1.CrossRefGoogle Scholar
34.Tachiki, M. and Takahashi, S., Solid State Commun, (in press).Google Scholar
35.Saemann-Ischenko, G., Hensel, B., Roas, B., Dengler, J., Ritter, G., Klaumunzer, S., Hoenig, H.E., Neumuller, H.W., Schutzmann, J., Franz, M., Ose, W., Renk, K.F., and Nagy, D.L., Mod. Phys. Lett. B (in press).Google Scholar
36. For a complete discussion on the relation between the penetration depth and the order parameter in the various limits see Introduction to Superconductivity by Tinkham, M. (McGraw-Hill, Inc. 1975) p. 73.Google Scholar
37.Gorkov, L.P., Zh. Eksperim. Teor. Fiz. 36 (1959) p. 1918 [Soviet Physics JETP 9 (1959) p. 1364].Google Scholar
38.Guimpel, J., de la Cruz, F., Murduck, J., and Schuller, I.K., Phys. Rev. B 35 (1987) p. 3655.CrossRefGoogle Scholar
39.Vaglio, R., Cucolo, A., and Falco, C.M., Phys. Rev. B 35 (1987) p. 1721.CrossRefGoogle Scholar
40.Kanoda, K., Mazaki, H., Yamada, T., Hosoito, N., and Shinjo, T., Phys. Rev. B 35 (1987) p. 415.CrossRefGoogle Scholar
41. The resistivity values for evaluating Equation 1 were taken from Werner, T.R., Banerjee, I., Yang, Q.S., Falco, C.M., and Schuller, I.K., Phys. Rev. B 26 (1982) p. 2224.CrossRefGoogle Scholar
42.Guimpel, J., Civale, L., la Cruz, F. de, Murduck, J.M., and Schuller, I.K., Phys. Rev. B 38 (1988) p. 2342.CrossRefGoogle Scholar
43.Sutton, J., Proc. Phys. Soc. 87 (1966) p. 971; B. Takacs, Czech J. Phys. B33 (1983) p. 1248.CrossRefGoogle Scholar
44.Bean, C.P. and Livingston, J.D., Phys. Rev. Lett. 12 (1964) p. 14.CrossRefGoogle Scholar
45.Chun, C.S.L., Zheng, G.G., Vicent, J.L., and Schuller, I.K., Phys. Rev. B 29 (1984) p. 4915.CrossRefGoogle Scholar
46.Klemm, R.A., Luther, A., and Beasley, M.R., Phys. Rev. B 12 (1975) p. 877.CrossRefGoogle Scholar
47.Locquet, J.P., Sevenhans, W., Bruynseraede, Y., Homma, H., and Schuller, I.K., IEEE Trans. Magn. MAG–23 (1987) p. 1393.CrossRefGoogle Scholar
48.Obi, Y., Ikebe, M., Muto, Y., and Fujimori, H., Jpn. J. Appl. Phys. 26 (1987) p. 1445.CrossRefGoogle Scholar
49.Karkut, M.G., Matijasevic, V., Antongnazza, L., Triscone, J.M., Missert, N., Beasley, M.R., and Fischer, O., Phys. Rev. Lett. 60 (1988) p. 1751.CrossRefGoogle Scholar
50.Homma, H., Chun, C.S.L., Zheng, G.G., and Schuller, I.K., Phys. Rev. B 33 (1986) p. 3562.CrossRefGoogle Scholar
51.Cantor, R.H., Dahlberg, E.D., Goldman, A.M., Toth, L.E., and Christnev, G.L., Solid State Commun. 34 (1980) p. 485.CrossRefGoogle Scholar
52.Uher, C., Cohn, J.L., and Schuller, I.K., Phys. Rev. B 34 (1986) p. 4906.CrossRefGoogle Scholar
53.Matijasevic, V. and Beasley, M., Phys. Rev. B 35 (1987) p. 3175.CrossRefGoogle Scholar
54.Karkut, M.G., Triscone, J.M., Ariosa, D., and Fischer, O., Phys. Rev. B 34 (1986) p. 4390.CrossRefGoogle Scholar