Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T16:27:07.008Z Has data issue: false hasContentIssue false

Artificial nonreciprocal photonic materials at GHz-to-THz frequencies

Published online by Cambridge University Press:  11 June 2018

Andrea Alù
Affiliation:
Advanced Science Research Center, The City University of New York, USA; [email protected]
Harish Krishnaswamy
Affiliation:
Columbia University, USA; [email protected]
Get access

Abstract

Lorentz reciprocity governs the symmetry with which electromagnetic signals travel in space and time. A reciprocal channel supports signal transport in two directions with the same transmission properties. Nonreciprocal devices do not obey this general symmetry, and therefore enable isolation and circulation, offering fundamental functionalities in modern GHz-to-THz photonic systems. While most nonreciprocal devices to date are based on magneto-optical phenomena, significant interest has been raised by approaches that avoid the use of magnetic materials, instead relying on artificial materials and circuits that mimic magnetically biased ferrites, enabling compact, light, integrated, and significantly cheaper nonreciprocal devices. Here, we review recent progress in and opportunities offered by artificial nonmagnetic materials that break reciprocity, revealing their potential for compact nonreciprocal devices and systems.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Casimir, H.B.G., Rev. Mod. Phys. 17, 343 (1945).CrossRefGoogle Scholar
Bharadia, D., McMilin, E., Katti, S., Comput. Commun. Rev. 43, 375 (2013).CrossRefGoogle Scholar
Zhou, J., Reiskarimian, N., Diakonikolas, J., Dinc, T., Chen, T., Zussman, G., Krishnaswamy, H., IEEE Commun. Mag. 55 (4), 142 (2017).CrossRefGoogle Scholar
Freiser, M., IEEE Trans. Magn. 4, 152 (1968).CrossRefGoogle Scholar
Chen, W., Leykam, D., Chong, Y.D., Yang, L., MRS Bull. 43 (6), 443 (2018).CrossRefGoogle Scholar
Aleahmad, P., Khajavikhan, M., Christodoulides, D., LiKamWa, P., Sci. Rep. 7, 2129 (2017).CrossRefGoogle Scholar
Shi, Y., Yu, Z., Fan, S., Nat. Photonics 9, 388 (2015).CrossRefGoogle Scholar
Tanaka, S., Shimimura, N., Ohtake, K., Proc. IEEE 53, 260 (1965).CrossRefGoogle Scholar
Kodera, T., Sounas, D.L., Caloz, C., Appl. Phys. Lett. 99, 031114 (2011).CrossRefGoogle Scholar
Kodera, T., Sounas, D.L., Caloz, C., IEEE Trans. Microw. Theory Tech. 61, 1030 (2013).CrossRefGoogle Scholar
Wang, Z., Wang, Z., Wang, J., Zhang, B., Huangfu, J., Joannopoulos, J.D., Soljačić, M., Ran, L., Proc. Natl. Acad. Sci. U.S.A. 109, 13194 (2012).CrossRefGoogle Scholar
Sounas, D.L., Alù, A., Nat. Photonics 11, 774 (2017).CrossRefGoogle Scholar
Kamal, A.K.A., Proc. IRE 48, 1424 (1960).CrossRefGoogle Scholar
Anderson, B.D.O., Newcomb, R.W., Proc. IEEE 53, 1674 (1965).CrossRefGoogle Scholar
Wentz, J.L., Proc. IEEE 54, 96 (1966).CrossRefGoogle Scholar
Brenner, H.E.A., IEEE Trans. Microw. Theory Tech. 15, 301 (1967).CrossRefGoogle Scholar
Carchon, G., Nanwelaers, B., IEEE Trans. Microw. Theory Tech. 48, 316 (2000).CrossRefGoogle Scholar
Tzuang, L.D., Fang, K., Nussenzveig, P., Fan, S., Lipson, M., Nat. Photonics 8, 701 (2014).CrossRefGoogle Scholar
Doerr, C.R., Chen, L., Vermeulen, D., Opt. Express 22, 4493 (2014).CrossRefGoogle Scholar
Kamal, A., Clarke, J., Devoret, M.H., Nat. Phys. 7, 311 (2011).CrossRefGoogle Scholar
Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A., Science 343, 516 (2014).CrossRefGoogle Scholar
Yu, Z., Fan, S., Nat. Photonics 3, 91 (2009).CrossRefGoogle Scholar
Qin, S., Xu, Q., Wang, Y.E., IEEE Trans. Microw. Theory Tech. 62, 2260 (2014).CrossRefGoogle Scholar
Sounas, D.L., Caloz, C., Alù, A., Nat. Commun. 4, 2407 (2013).CrossRefGoogle Scholar
Sounas, D.L., Alù, A., ACS Photonics 1, 198 (2014).CrossRefGoogle Scholar
Estep, N.A., Sounas, D.L., Soric, J., Alù, A., Nat. Phys. 10, 923 (2014).CrossRefGoogle Scholar
Estep, N.A., Sounas, D.L., Alù, A., IEEE Trans. Microw. Theory Tech. 64, 502 (2016).Google Scholar
Kerckhoff, J., Lalumière, K., Chapman, B.J., Blais, A., Lehnert, K.W., Phys. Rev. Appl. 4, 034002 (2015).CrossRefGoogle Scholar
Hadad, Y., Sounas, D.L., Alù, A., Phys. Rev. B Condens. Matter 92, 100304 (2015).CrossRefGoogle Scholar
Shaltout, A., Kildishev, A., Shalaev, V., Opt. Mater. Express 5, 2459 (2015).CrossRefGoogle Scholar
Hadad, Y., Soric, J.C., Alù, A., Proc. Natl. Acad. Sci. U.S.A. 113, 3471 (2016).CrossRefGoogle Scholar
Taravati, S., Caloz, C., IEEE Trans. Antennas Propag. 65, 442 (2017).CrossRefGoogle Scholar
Zhu, L., Fan, S., Phys. Rev. B Condens. Matter 90, 220301 (2014).Google Scholar
Green, M., Nano Lett. 12, 5985 (2012).CrossRefGoogle Scholar
Correas-Serrano, D., Gomez-Diaz, J.S., Sounas, D.L., Hadad, Y., Alvarez-Melcon, A., Alù, A., IEEE Antennas Wirel. Propag. Lett. 15, 1529 (2015).CrossRefGoogle Scholar
Phare, C.T., Lee, Y.H.D., Cardenas, J., Lipson, M., Nat. Photonics 9, 511 (2015).CrossRefGoogle Scholar
Reiskarimian, N., Krishnaswamy, H., Nat. Commun. 7, 11217 (2016).CrossRefGoogle Scholar
Reiskarimian, N., Zhou, J., Krishnaswamy, H., IEEE J. Solid-State Circuits 52 (5), 1358 (2017).CrossRefGoogle Scholar
Dinc, T., Tymchenko, M., Nagulu, A., Sounas, D., Alù, A., Krishnaswamy, H., Nat. Commun. 8, 795 (2017).CrossRefGoogle Scholar
Dinc, T., Nagulu, A., Krishnaswamy, H., IEEE J. Solid-State Circuits 52 (12), 3276 (2017).CrossRefGoogle Scholar
Busignies, H., Dishal, M., Proc. IRE 37, 478 (1949).CrossRefGoogle Scholar
LePage, W.R., Cahn, C.R., Brown, J.S., Trans. Am. Inst. Electr. Eng. Pt. I 72, 63 (1953).Google Scholar
Ghaffari, A., Klumperink, E., Soer, M., Nauta, B., IEEE J. Solid-State Circuits 46, 998 (2011).CrossRefGoogle Scholar
Reiskarimian, N., Zhou, J., Chuang, T.-H., Krishnaswamy, H., IEEE Trans. Circuits Syst. II Express Briefs 63 (8), 728 (2016).CrossRefGoogle Scholar
Nagulu, A., Alù, A., Krishnaswamy, H., IEEE RFIC Symposium (2018).Google Scholar
Sounas, D.L., Alù, A., Phys. Rev. Lett. 118, 154302 (2017).CrossRefGoogle Scholar
Kord, A.. Sounas, D.L., Alù, A., Electr. Eng. Syst. Sci. Signal Process. (2017), https://arxiv.org/abs/1709.08133.Google Scholar
Lu, L., Joannopoulos, J.D., Soljačić, M., Nat. Photonics 8, 821 (2014).CrossRefGoogle Scholar
Raghu, S., Haldane, F.D.M., Phys. Rev. A At. Mol. Opt. Phys. 78, 033834 (2008).CrossRefGoogle Scholar
Fleury, R., Khanikaev, A., Alù, A., Nat. Commun., 7, 11744 (2016).CrossRefGoogle Scholar
Schmidt, M., Kessler, S., Peano, V., Painter, O., Marquardt, F., Optica 2, 635 (2015).CrossRefGoogle Scholar
Peano, V., Brendel, C., Schmidt, M., Marquardt, F., Phys. Rev. X 5, 031011 (2015).Google Scholar
Reiskarimian, N., Dastjerdi, M.B., Zhou, J., Krishnaswamy, H., in 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 316317.CrossRefGoogle Scholar