Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T05:12:11.779Z Has data issue: false hasContentIssue false

Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective

Published online by Cambridge University Press:  12 July 2019

Kareem S. Aggour
Affiliation:
GE Research, USA, [email protected]
Vipul K. Gupta
Affiliation:
GE Research, USA, [email protected]
Daniel Ruscitto
Affiliation:
GE Research, USA, [email protected]
Leonardo Ajdelsztajn
Affiliation:
GE Research, USA, [email protected]
Xiao Bian
Affiliation:
GE Research, USA, [email protected]
Kristen H. Brosnan
Affiliation:
GE Research, USA, [email protected]
Natarajan Chennimalai Kumar
Affiliation:
GE Research, USA, [email protected]
Voramon Dheeradhada
Affiliation:
GE Research, USA, [email protected]
Timothy Hanlon
Affiliation:
GE Research, USA, [email protected]
Naresh Iyer
Affiliation:
GE Research, USA, [email protected]
Jaydeep Karandikar
Affiliation:
GE Research, USA, [email protected]
Peng Li
Affiliation:
GE Research, USA, [email protected]
Abha Moitra
Affiliation:
GE Research, USA, [email protected]
Johan Reimann
Affiliation:
GE Research, USA, [email protected]
Dean M. Robinson
Affiliation:
GE Research, USA, [email protected]
Alberto Santamaria-Pang
Affiliation:
GE Research, USA, [email protected]
Chen Shen
Affiliation:
GE Research, USA, [email protected]
Monica A. Soare
Affiliation:
GE Research, USA, [email protected]
Changjie Sun
Affiliation:
GE Research, USA, [email protected]
Akane Suzuki
Affiliation:
GE Research, USA, [email protected]
Raju Venkataramana
Affiliation:
GE Research, USA, [email protected]
Joseph Vinciquerra
Affiliation:
GE Research, USA, [email protected]
Get access

Abstract

At GE Research, we are combining “physics” with artificial intelligence and machine learning to advance manufacturing design, processing, and inspection, turning innovative technologies into real products and solutions across our industrial portfolio. This article provides a snapshot of how this physical plus digital transformation is evolving at GE.

Type
The Machine Learning Revolution in Materials Research
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rangarajan, A., Radhakrishnan, P., Moitra, A., Crapo, A., Robinson, D., “Manufacturability Analysis and Design Feedback System Developed Using Semantic Framework,” Proc. ASME 2013 Int. Des. Eng. Tech. Conf. (IDETC) and Comput. Inf. Eng. Conf. (CIE) (2013).Google Scholar
SADL Semantic Application Design Language (open source), http://sadl.sourceforge.net.Google Scholar
Crapo, A., Moitra, A., Int. J. Semant. Comput. 7 (3), 215 (2013).CrossRefGoogle Scholar
Moitra, A., Crapo, A., Palla, R., “Concept-Level Rules for Capturing Domain Knowledge,” 12th IEEE International Conference on Semantic Computing , Laguna Hills, CA, 2018.Google Scholar
Moitra, A., Palla, R., Rangarajan, A., “Automated Capture and Execution of Manufacturability Rules Using Inductive Logic Programming,” Innovative Applications of Artificial Intelligence (IAAI), Phoenix, 2016.Google Scholar
Nie, P., Ojo, O.A., Li, Z., Acta Mater . 77, 85 (2014).CrossRefGoogle Scholar
Dheeradhada, V.S., Chennimalai Kumar, N., Dial, L., Hanlon, T., Vinciquerra, J., Gupta, V., “Machine Learning Assisted Development in Additive Manufacturing,” Patent Application 16/184,481 (2018).Google Scholar
Dheeradhada, V.S., Chennimalai Kumar, N., Dial, L., Hanlon, T., Vinciquerra, J., Gupta, V., Grande, J., “Machine Learning Assisted Parameter Development in Additive Manufacturing,” paper presented at the Materials Research Society Spring Meeting, Phoenix, 2018.Google Scholar
Kumar, N.C., Subramaniyan, A.K., Wang, L., “Improving High-Dimensional Physics Models through Bayesian Calibration with Uncertain Data,” ASME Turbo Expo 2012: Turbine Technical Conference and Exposition (American Society of Mechanical Engineers, Copenhagen, Denmark, 2012), pp. 407416.Google Scholar
Kumar, N.C., Subramaniyan, A.K., Wang, L., Wiggs, G., “Calibrating Transient Models with Multiple Responses Using Bayesian Inverse Techniques,” ASME Turbo Expo 2013: Turbine Technical Conference and Exposition (American Society of Mechanical Engineers, San Antonio, 2013).Google Scholar
Ling, Y., Ghosh, S., Asher, I.M., Kristensen, J., Ryan, K., Wang, L., “An Intelligent Sampling Framework for Multi-Objective Optimization in High Dimensional Design Space,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, 2018.Google Scholar
Kristensen, J., Ling, Y., Asher, I., Wang, L., “Expected-Improvement-Based Methods for Adaptive Sampling in Multi-Objective Optimization Problems,” in ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, Charlotte, NC, 2016.Google Scholar
Ryan, K.M., Kristensen, J., Ling, Y., Ghosh, S., Asher, I., Wang, L., “A Gaussian Process Modeling Approach for Fast Robust Design with Uncertain Inputs,” ASME. Turbo Expo: Power for Land, Sea, and Air, Volume 7A: Structures and Dynamics.Google Scholar
Suzuki, A., Shen, C., Chennimalai Kumar, N., MRS Bull . 44 (4), 247 (2019).CrossRefGoogle Scholar
Ajdelsztajn, L., Schoenung, J.M., Jodoin, B., Kim, G.E., Metall. Mater. Trans. A, 36 (3), 657 (2005).CrossRefGoogle Scholar
Ajdelsztajn, L., Lavernia, E.J., Jodoin, B., Richer, P., Sansoucy, E., J. Therm. Spray Technol. 15 (4), 495 (2006).CrossRefGoogle Scholar
Tlusty, J., Manufacturing Process and Equipment (Prentice Hall, Upper Saddle River, NJ, 2000), p. 463.Google Scholar
Taylor, F., Trans. ASME 28, 31 (1906).Google Scholar
Alauddin, M., El Baradie, M., Hashmi, M., J. Mater. Process. Technol. 71 (3), 456 (1997).CrossRefGoogle Scholar
Usui, E., Shirakashi, T., Kitagawa, T., Wear 100 (1–3), 129 (1984).CrossRefGoogle Scholar
Xie, L., Schmidt, J., Schmidt, C., Biesinger, F., Wear 258 (10), 1479 (2005).CrossRefGoogle Scholar
Karandikar, J., Trans. NAMRI/SME 47 (forthcoming) (2019).Google Scholar
Bishop, C.M., Pattern Recognition and Machine Learning (Springer, Singapore, 2006).Google Scholar
Karandikar, J., Kurfess, T., J. Manuf. Syst. 37, 479 (2015).CrossRefGoogle Scholar
Ronneberger, O., Fischer, P., Brox, T., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Lecture Notes in Computer Science, vol. 9351; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds. (Springer, Cham, Switzerland, 2015).Google Scholar
Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang, Z., CoRR (2015), abs/1512.01274.Google Scholar
Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W., Schindelin, J., Cardona, A., Seung, H.S., Bioinformatics 33 (15), 2424 (2017).CrossRefGoogle Scholar
Gugel, L., Brada, R.S., Santamaria-Pang, A., Wein, R., Wilson, G.S., “Multi-stage Segmentation Using Synthetic Images,” US Patent Application No. 16/229, 743, General Electric Company (March 12, 2019).Google Scholar
Kellner, T., Bringing Back the Bling: New Process Recovers Precious Platinum from “Smut,” GE Reports (March 31, 2015), https://www.ge.com/reports/post/115132114280/bringing-back-the-bling-new-process-recovers/.Google Scholar
Li, P., Wei, B., Xu, H., Gleason, M., Allison, W., Wessels, J., Zurawka, J., “Electro Discharge Machining Apparatus and Method,” US Patent US9333577B2.Google Scholar
Bian, X., Lim, S.N., Zhou, N., “Multiscale Fully Convolutional Network with Application to Industrial Inspection,” in Applications of Computer Vision (WACV), IEEE Winter Conference , 2016, pp.18.Google Scholar
Diwinsky, D.S., Lim, S.N., Bian, X., US Patent No. 9,785,919 (2017).Google Scholar
Maybury, M.T., Wahlster, W., Eds., Readings in Intelligent User Interfaces (Morgan Kaufman Publishers, San Francisco, 1998).Google Scholar
Castellanos, S., “Augmented Reality to Debut on GE’s Factory Floors,” CIO J ., (November 9, 2016), https://blogs.wsj.com/cio/2016/11/09/augmented-reality-to-debut-on-ges-factory-floors.Google Scholar
Kawamoto, M., Nishioka, K., Inui, T., Tsuchiya, F., J. Jpn. Soc. Test. Mater. 4 (19), 42 (1955).Google Scholar
Novovic, D., Dewes, R.C., Aspinwall, D.K., Voice, W., Bowen, P., Int. J. Mach. Tools Manuf. 44, 125 (2004).CrossRefGoogle Scholar
As, S.K., Skallerud, B., Tveiten, B.W., Holme, B., Int. J. Fatigue 27, 1590 (2005).CrossRefGoogle Scholar
Hanlon, T., Reimann, J., Soare, M.A., Singhal, A., Grande, J., Edgar, M., Aggour, K.S., Vinciquerra, J., CoRR, arXiv:1906.05270 [CS.LG] (2019).Google Scholar
Williams, J., Cuddihy, P., McHugh, J., Aggour, K.S., Menon, A., Gustafson, S., Healy, T., “Semantics for Big Data Access & Integration: Improving Industrial Equipment Design Through Increased Data Usability,” IEEE International Conference on Big Data (Big Data), 2015, Santa Clara, CA, pp. 11031112.CrossRefGoogle Scholar
McHugh, J., Cuddihy, P.E., Williams, J.W., Aggour, K.S., Kumar, V.S., Mulwad, V., “Integrated Access to Big Data Polystores through a Knowledge-Driven Framework,” IEEE International Conference on Big Data (Big Data), 2017, Boston, pp. 14941503.CrossRefGoogle Scholar
Cuddihy, P., McHugh, J., Williams, J.W., Mulwad, V., Aggour, K.S., “SemTK: A Semantics Toolkit for User-Friendly SPARQL Generation and Semantic Data Management,” 17th International Semantic Web Conference (ISWC), Industry and Blue Sky Ideas Track, Monterey, CA, 2018.Google Scholar
SemTK Semantics Toolkit (open source), https://github.com/ge-semtk/semtk.Google Scholar