Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T00:12:48.983Z Has data issue: false hasContentIssue false

Arthur von Hippel and Magnetism

Published online by Cambridge University Press:  31 March 2011

Get access

Abstract

This article examines the role that Arthur von Hippel played in magnetism work in the 1950s.Von Hippel understood that the ferrimagnetic insulators represented by the ferrospinels, magnetoplumbites, and ferrogarnets were critical for the high-frequency technology that was being developed after World War II. At the Laboratory for Insulation Research at MIT, he and his students concentrated on the response of these materials to electric and magnetic excitations over a wide frequency range that extended, with gaps, from dc to the ultraviolet. For magnetic studies, he used microwave frequencies to obtain resonance and relaxation data that could be interpreted because the magnetic spins are relatively loosely coupled to their surroundings. He supplemented these resonance studies with classical magnetometer, transport, and x-ray diffraction measurements on single-crystal samples in order to obtain fundamental information that would aid in the design of materials for technical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Smiltens, J. and Fryklund, D.H., Laboratory of Insulation Research, Massachusetts Institute of Technology, 1950; J. Smiltens, J. Chem. Phys. 20 (1952) p. 990.Google Scholar
2Miles, P.A., Westphal, W.B., and Hippel, A. von, Revs. Mod. Phys. 29 (1957) p. 279.CrossRefGoogle Scholar
3Millar, R.W., J. Am. Chem. Soc. 51 (1929) p. 215.CrossRefGoogle Scholar
4Verwey, E.J., Nature 144 (1939) p. 337; E.J.W. Verwey and P.W. Haayman, Physica 8 (1941) p. 979; E.J.W. Verwey, P.W. Haayman, and F.C. Romeijn, J. Chem. Phys. 15 (1947) p. 181.CrossRefGoogle Scholar
5Tombs, N.C. and Rooksby, H.P., Acta Cryst. 4 (1951) p. 474.CrossRefGoogle Scholar
6Abrahams, S.C. and Calhoun, B.A., Acta Cryst. 6 (1953) p. 105; S.C. Abrahams and B.A. Calhoun, Acta Cryst. 8 (1955) p. 257.CrossRefGoogle Scholar
7Bickford, L.R. Jr., Revs. Mod. Phys. 25 (1953) p. 75.CrossRefGoogle Scholar
8Hamilton, W.C., Phys. Rev. 110 (1958) p. 1050.CrossRefGoogle Scholar
9Bickford, L.R. Jr., Phys. Rev. 78 (1950) p. 449.CrossRefGoogle Scholar
10Calhoun, B.A., Phys. Rev. 94 (1954) p. 1577.CrossRefGoogle Scholar
11Li, C.H., Phys. Rev. 40 (1932) p. 1002.CrossRefGoogle Scholar
12Hargrove, R.S. and Kündig, W., Solid State Commun. 8 (1970) p. 303.CrossRefGoogle Scholar
13Siemons, W.J., IBM J. Res. Develop. 14 (1970) p. 245.CrossRefGoogle Scholar
14Constantin, C. and Rosenberg, M., Solid State Commun. 10 (1972) p. 675.Google Scholar
15Cullen, J.R. and Callen, E., Phys. Rev. Lett. 26 (1971) p. 236; J.R. Cullen and E. Callen, Phys. Rev. B 7 (1973) p. 397.CrossRefGoogle Scholar
16Zhou, J.-S., unpublished.Google Scholar
17Subias, G., Garcia, J., Blasco, J., Proietti, M.G., Renevier, H., and Sanchez, M.C., Phys. Rev. Lett. 93 156408 (2004).CrossRefGoogle Scholar
18Iizumi, M., Koetzle, T.F., Shirane, G., Chikazumi, S., Matsui, M., and Todo, S., Acta Cryst. B 38 (1982) p. 2121.Google Scholar
19Zuo, J.M., Spence, C.H., and Petuskey, W., Phys. Rev. B 42 (1990) p. 8451.CrossRefGoogle Scholar
20Landau, L. and Lifshitz, E., Physik. Z. Sowjetunion 8 (1931) p. 135.Google Scholar
21Kittel, C., Phys. Rev. 73 (1948) p. 155; C. Kittel, Phys. Rev. 76 (1949) p. 743.CrossRefGoogle Scholar
22Domenicali, C.A., Rev. Sci. Instr. 21 (1950) p. 327.Google Scholar
23Smith, D.O., Rev. Sci. Instr. 27 (1956) p. 261.CrossRefGoogle Scholar
24Menyuk, N., Kafalas, J.A., Dwight, K., and Goodenough, J.B., Phys. Rev. 177 (1969) p. 942.CrossRefGoogle Scholar
25Calhoun, B.A., Technical Report of Laboratory for Insulation Research (Massachusetts Institute of Technology, Cambridge, Mass., July 1953) unpublished.Google Scholar
26Bickford, L.R. Jr., Pappis, J., and Stull, J.L., Phys. Rev. 99 (1955) p. 1210.CrossRefGoogle Scholar
27Penoyer, R.F. and Bickford, L.R. Jr., Phys. Rev. 108 (1957) p. 271.CrossRefGoogle Scholar
28Goodenough, J.B. and Loeb, A.L., Phys. Rev. 98 (1955) p. 391.CrossRefGoogle Scholar
29Kanamori, J., Progr. Theoretical Physics (Kyoto) 17 (1957) p. 197.Google Scholar
30Slonzewski, J.C., Phys. Rev. 110 (1958) p. 1341.CrossRefGoogle Scholar
31Goodenough, J.B., Magnetism and the Chemical Bond (Wiley Interscience, New York, 1963).Google Scholar
32Penoyer, R.F., Rev. Sci. Instr. 30 (1959) p. 711.CrossRefGoogle Scholar
33Epstein, D.J. and Frackiewicz, B., J. Appl. Phys. 29 (1958) p. 376.CrossRefGoogle Scholar
34Calhoun, B.A., J. Appl. Phys. 30 (1959) p. 2935.CrossRefGoogle Scholar
35Epstein, D.J. and Frackiewicz, B., J. Appl. Phys. 30 (1959) p. 2955.CrossRefGoogle Scholar
36Epstein, D.J., Frackiewicz, B., and Hunt, R.P., J. Appl. Phys. 32 (1961) p. 2705.CrossRefGoogle Scholar
37Lovell, B.W. and Epstein, D.J., J. Appl. Phys. 34 (part 2) (1963) p. 1115.CrossRefGoogle Scholar
38Neel, L., J. Phys. Radium 13 (1952) p. 246.CrossRefGoogle Scholar
39Janak, J.F., J. Appl. Phys. 34 (1963) p. 1119.CrossRefGoogle Scholar