Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:28:15.598Z Has data issue: false hasContentIssue false

Applications of Neutron Reflectivity Measurements to Nanoscience: Thin Films and Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Neutron reflectivity has matured in recent years from an exotic method used only by a few experts to an essential tool for the investigation of thin films and interfaces on the nanoscale. In contrast to x-ray reflectivity, which provides electron density profiles, neutron reflectivity reveals the nuclear density profile. This is an essential difference when exploring hydrogenous materials such as polymers, Langmuir–Blodgett films, and membranes. Furthermore, neutrons carry a magnetic moment that interacts with the magnetic induction of the film, revealing, in addition to the nuclear density profile, the magnetic density profile in layers and superlattices. Recent developments in the analysis of off-specular neutron reflectivity data enable the characterization of chemical and magnetic correlations within the film plane on nanometer to micron length scales. A new generation of pulsed neutron sources, featuring flux enhancements of factors of 10–100 over existing sources, will make these types of measurements even more exciting, while kinetic studies, pump-probe, and small-sample experiments will become feasible, opening new windows onto nanoscale materials science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Born, M. and Wolf, E., Principles of Optics, 7th ed. (Cambridge University Press, New York, 1999).CrossRefGoogle Scholar
2.Squires, G.L., Introduction to the Theory of Thermal Neutron Scattering (Dover Publications, Mineola, NY, 1997).Google Scholar
3.Parratt, L.G., Phys. Rev. 95 (1954) p. 359.CrossRefGoogle Scholar
4.Ankner, J.F. and Felcher, G.P., J. Magn. Magn. Mater. 200 (1999) p. 741.CrossRefGoogle Scholar
5.Sinha, S.K., Sirota, E.B., Garoff, S., and Stanley, H.B., Phys. Rev. B 38 (1988) p. 2297.CrossRefGoogle Scholar
6.Karim, A., Satija, S.K., Douglas, J.F., Ankner, J.F., and Fetters, L.J., Phys. Rev. Lett. 73 (1994) p. 3407.CrossRefGoogle Scholar
7.Russell, T.P., Mater. Sci. Rep. 5 (1990) p. 171.CrossRefGoogle Scholar
8.Lu, J.R. and Thomas, R.K., J. Chem. Soc., Faraday Trans. 94 (1998) p. 995.Google Scholar
9.Schreyer, A., Ankner, J.F., Zeidler, Th., Zabel, H., Schäfer, M., Wolf, J.A., Grünberg, P., and Majkrzak, C.F., Phys. Rev. B 52 (1995) p. 16066.CrossRefGoogle Scholar
10.Lauter-Pasyuk, V., Lauter, H.J., Toperverg, B.P., Romashev, L., and Ustinov, V., Phys. Rev. Lett. 89 167203 (2002).CrossRefGoogle Scholar
11.Leighton, C., Fitzsimmons, M.R., Yashar, P., Hoffmann, A., Nogués, J., Dura, J., Majkrzak, C.F., and Schuller, I.K., Phys. Lett. 86 (2001) p. 4394.CrossRefGoogle Scholar
12.Fitzsimmons, M.R., Yashar, P., Leighton, C., Schuller, I.K., Nogués, J., Majkrzak, C.F., and Dura, J.A., Phys. Rev. Lett. 84 (2000) p. 3986.CrossRefGoogle Scholar
13.Radu, F., Etzkorn, M., Siebrecht, R., Schmitte, T., Westerholt, K., and Zabel, H., Phys. Rev. B 67 134409 (2003).CrossRefGoogle Scholar
14.O'Donovan, K.V., Borchers, J.A., Majkrzak, C.F., Hellwig, O., and Fullerton, E.E., Phys. Rev. Lett. 88 067201 (2002).CrossRefGoogle Scholar
15.Kepa, H., Kutner-Pielaszek, J., Twardowski, A., Majkrzak, C.F., Sadowski, J., Story, T., and Giebultowicz, T.M., Phys. Rev. B 64 121302(R) (2001).CrossRefGoogle Scholar
16.te Velthuis, S.G.E., Jiang, J.S., Bader, S.D., and Felcher, G.P., Phys. Rev. Lett. 89 127203 (2002).CrossRefGoogle Scholar
17.Temst, K., Van-Bael, M.J., and Fritzsche, H., Appl. Phys. Lett. 79 (2001) p. 991.CrossRefGoogle Scholar
18.Theis-Bröhl, K., Schmitte, T., Leiner, V., Zabel, H., Rott, K., Brückl, H., and McCord, J., Phys. Rev. B 67, 184415 (2003);CrossRefGoogle Scholar
Theis-Bröhl, K., Adv. Solid State Phys. 43 (2003) p. 801.CrossRefGoogle Scholar
19.Bucknall, D.G., Butler, S.A., and Higgins, J.S., Macromolecules 32 (1999) p. 5453.CrossRefGoogle Scholar
20.Pynn, R., Fitzsimmons, M.R., Rekveldt, M.T., Major, J., Fritsche, H., Weller, D., and Johns, E.C., Rev. Sci. Instrum. 73 (2002) p. 2948.CrossRefGoogle Scholar
21.Major, J., Dosch, H., Felcher, G.P., Habicht, K., Keller, T., te Velthuis, S.G.E., Vorobiev, A., and Wahl, M., Physica B in press.Google Scholar
22.Majkrzak, C.F., Berk, N.F., Krueger, S., Dura, J.A., Tarek, M., Tobias, D., Silin, V., Meuse, C.W., Woodward, J., and Plant, A.L., Biophys. J. 79 (2000) p. 3330.CrossRefGoogle Scholar
23.Rühm, A., Toperverg, B.P., and Dosch, H., Phys. Rev. B 60 (1999) p. 16073.CrossRefGoogle Scholar