Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T15:20:08.614Z Has data issue: false hasContentIssue false

Applications of carbon nanotubes and graphene produced by chemical vapor deposition

Published online by Cambridge University Press:  10 November 2017

Peng-Xiang Hou
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China; [email protected]
Jinhong Du
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China; [email protected]
Chang Liu
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China; [email protected]
Wencai Ren
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China; [email protected]
Esko I. Kauppinen
Affiliation:
Department of Applied Physics, School of Science, Aalto University, Finland; [email protected]
Hui-Ming Cheng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences; and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China; [email protected] and [email protected]
Get access

Abstract

High-quality carbon nanotubes (CNTs) and graphene synthesized by chemical vapor deposition (CVD) have unique one- and two-dimensional structures made up of sp2-hybridized carbon atoms and excellent physical and chemical properties. They have shown potential for use in electronics, optoelectronics, energy-storage devices, composites, and sensors. In this article, we review important milestones in these uses of CNTs and graphene produced by CVD, with special emphasis on the latest advances and remaining challenges. The key characteristics and advantages of CNTs and graphene synthesized by CVD for different applications are compared, and future trends in the use of these nanocarbons are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jia, X., Wei, F., Top. Curr. Chem. 375, 1 (2017).Google Scholar
Han, M.Y., Ozyilmaz, B., Zhang, Y.B., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).Google Scholar
Raza, H., Kan, E.C., Phys. Rev. B Condens. Matter 77, 245434 (2008).Google Scholar
Wu, Y., Lin, Y.-M., Bol, A.A., Jenkins, K.A., Xia, F., Farmer, D.B., Zhu, Y., Avouris, P., Nature 472, 74 (2011).Google Scholar
Cheng, R., Bai, J., Liao, L., Zhou, H., Chen, Y., Liu, L., Lin, Y.-C., Jiang, S., Huang, Y., Duan, X., Proc. Natl. Acad. Sci. U.S.A. 109, 11588 (2012).Google Scholar
Che, Y., Wang, C., Liu, J., Liu, B., Lin, X., Parker, J., Beasley, C., Wong, H.S.P., Zhou, C., ACS Nano 6, 7454 (2012).CrossRefGoogle Scholar
Steiner, M., Engel, M., Lin, Y.-M., Wu, Y., Jenkins, K., Farmer, D.B., Humes, J.J., Yoder, N.L., Seo, J.-W.T., Green, A.A., Hersam, M.C., Krupke, R., Avouris, P., Appl. Phys. Lett. 101, 053123 (2012).Google Scholar
Qiu, C., Zhang, Z., Xiao, M., Yang, Y., Zhong, D., Peng, L.-M., Science 355, 271 (2017).CrossRefGoogle Scholar
Cao, Q., Tersoff, J., Farmer, D.B., Zhu, Y., Han, S.-J., Science 356, 1369 (2017).Google Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S., Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).Google Scholar
Lim, G.K., Chen, Z.L., Clark, J., Goh, R.G.S., Ng, W.H., Tan, H.W., Friend, R.H., Ho, P.K.H., Chua, L.L., Nat. Photonics 5, 554 (2011).Google Scholar
Essig, S., Marquardt, C.W., Vijayaraghavan, A., Ganzhorn, M., Dehm, S., Hennrich, F., Ou, F., Green, A.A., Sciascia, C., Bonaccorso, F., Bohnen, K.P., von Loehneysen, H., Kappes, M.M., Ajayan, P.M., Hersam, M.C., Ferrari, A.C., Krupke, R., Nano Lett. 10, 1589 (2010).Google Scholar
Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B., Science 298, 2361 (2002).Google Scholar
Wang, F., Dukovic, G., Brus, L.E., Heinz, T.F., Phys. Rev. Lett. 92, 177401 (2004).Google Scholar
Huang, L.B., Pedrosa, H.N., Krauss, T.D., Phys. Rev. Lett. 93, 017403 (2004).Google Scholar
O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J.P., Hauge, R.H., Weisman, R.B., Smalley, R.E., Science 297, 593 (2002).Google Scholar
Misewich, J.A., Martel, R., Avouris, P., Tsang, J.C., Heinze, S., Tersoff, J., Science 300, 783 (2003).Google Scholar
Yang, L., Wang, S., Zeng, Q., Zhang, Z., Peng, L.-M., Small 9, 1225 (2013).CrossRefGoogle ScholarPubMed
Chen, J., Perebeinos, V., Freitag, M., Tsang, J., Fu, Q., Liu, J., Avouris, P., Science 310, 1171 (2005).CrossRefGoogle Scholar
Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X., Nature 474, 64 (2011).Google Scholar
Du, J.H., Pei, S.F., Ma, L.P., Cheng, H.M., Adv. Mater. 26, 1958 (2014).Google Scholar
Sun, D.M., Liu, C., Ren, W.C., Cheng, H.M., Adv. Electron. Mater. 2, 22 (2016).Google Scholar
Sun, D.-M., Liu, C., Ren, W.-C., Cheng, H.-M., Small 9, 1188 (2013).Google Scholar
Zou, Y., Li, Q.Q., Liu, J.K., Jin, Y.H., Qian, Q.K., Jiang, K.L., Fan, S.S., Adv. Mater. 25, 6050 (2013).Google Scholar
Lee, S.-K., Kim, B.J., Jang, H., Yoon, S.C., Lee, C., Hong, B.H., Rogers, J.A., Cho, J.H., Ahn, J.-H., Nano Lett. 11, 4642 (2011).Google Scholar
Yu, W.J., Lee, S.Y., Chae, S.H., Perello, D., Han, G.H., Yun, M., Lee, Y.H., Nano Lett. 11, 1344 (2011).Google Scholar
Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., Zhou, C., Semicond. Sci. Technol. 29, 073001 (2014).Google Scholar
Zhang, Z., Du, J., Zhang, D., Sun, H., Yin, L., Ma, L., Chen, J., Ma, D., Cheng, H.M., Ren, W., Nat. Commun. 8, 14560 (2017).Google Scholar
Dominko, R., Gaberscek, M., Drofenik, J., Bele, M., Pejovnik, S., Jamnik, J., J. Power Sources 119, 770 (2003).Google Scholar
Im, D., Manthiram, A., Solid State Ionics 159, 249 (2003).Google Scholar
Liu, G., Zheng, H., Simens, A.S., Minor, A.M., Song, X., Battaglia, V.S., J. Electrochem. Soc. 154, A1129 (2007).Google Scholar
Shin, H.C., Cho, W.I., Jang, H., Electrochim. Acta 52, 1472 (2006).Google Scholar
Liu, X.-Y., Peng, H.-J., Zhang, Q., Huang, J.-Q., Liu, X.-F., Wang, L., He, X., Zhu, W., Wei, F., ACS Sustain. Chem. Eng. 2, 200 (2014).CrossRefGoogle Scholar
Thorat, I.V., Mathur, V., Harb, J.N., Wheeler, D.R., J. Power Sources 162, 673 (2006).CrossRefGoogle Scholar
Su, F.-Y., He, Y.-B., Li, B., Chen, X.-C., You, C.-H., Wei, W., Lv, W., Yang, Q.-H., Kang, F., Nano Energy 1, 429 (2012).CrossRefGoogle Scholar
Yang, J., Wang, J., Tang, Y., Wang, D., Li, X., Hu, Y., Li, R., Liang, G., Sham, T.-K., Sun, X., Energy Environ. Sci. 6, 1521 (2013).Google Scholar
De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., Science 339, 535 (2013).Google Scholar
Liu, W., Song, M.-S., Kong, B., Cui, Y., Adv. Mater. 29, 1603436 (2017).Google Scholar
Falvo, M.R., Clary, G.J., Taylor, R.M. II, Chi, V., Brooks, F.P. Jr., Washburn, S., Superfine, R., Nature 389, 582 (1997).Google Scholar
Wen, L., Li, F., Cheng, H.-M., Adv. Mater. 28, 4306 (2016).Google Scholar
Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., Cui, Y., Proc. Natl. Acad. Sci. U.S.A. 106, 21490 (2009).Google Scholar
Wu, Y., Wu, H., Luo, S., Wang, K., Zhao, F., Wei, Y., Liu, P., Jiang, K., Wang, J., Fan, S., RSC Adv. 4, 20010 (2014).Google Scholar
Wang, K., Luo, S., Wu, Y., He, X., Zhao, F., Wang, J., Jiang, K., Fan, S., Adv. Funct. Mater. 23, 846 (2013).Google Scholar
Li, N., Chen, Z., Ren, W., Li, F., Cheng, H.-M., Proc. Natl. Acad. Sci. U.S.A. 109, 17360 (2012).Google Scholar
Sun, X., Sun, H., Li, H., Peng, H., Adv. Mater. 25, 5153 (2013).Google Scholar
Du, J., Cheng, H.-M., Macromol. Chem. Phys. 213, 1060 (2012).Google Scholar
Du, J.H., Bai, J., Cheng, H.M., Express Polym. Lett. 1, 253 (2007).Google Scholar
Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M., Nat. Mater. 10, 424 (2011).Google Scholar
Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H.-M., Adv. Mater. 25, 1296 (2013).Google Scholar
Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., Baughman, R.H., Nature 423, 703 (2003).Google Scholar
Sandler, J.K.W., Kirk, J.E., Kinloch, I.A., Shaffer, M.S.P., Windle, A.H., Polymer 44, 5893 (2003).Google Scholar
Guo, W., Liu, C., Sun, X., Yang, Z., Kia, H.G., Peng, H., J. Mater. Chem. 22, 903 (2012).Google Scholar
Huang, H., Liu, C.H., Wu, Y., Fan, S.S., Adv. Mater. 17, 1652 (2005).Google Scholar
Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., Reinecke, T.L., Science 307, 1942 (2005).Google Scholar
Cao, Q., Rogers, J.A., Adv. Mater. 21, 29 (2009).Google Scholar
Kim, S.N., Rusling, J.F., Papadimitrakopoulos, F., Adv. Mater. 19, 3214 (2007).CrossRefGoogle Scholar
Hammock, M.L., Chortos, A., Tee, B.C.K., Tok, J.B.H., Bao, Z., Adv. Mater. 25, 5997 (2013).Google Scholar
Gong, K.P., Du, F., Xia, Z.H., Durstock, M., Dai, L.M., Science 323, 760 (2009).CrossRefGoogle Scholar
Qu, L., Liu, Y., Baek, J.-B., Dai, L., ACS Nano 4, 1321 (2010).CrossRefGoogle Scholar
Wu, J., Ma, L., Yadav, R.M., Yang, Y., Zhang, X., Vajtai, R., Lou, J., Ajayan, P.M., ACS Appl. Mater. Interfaces 7, 14763 (2015).CrossRefGoogle Scholar
Matsumoto, T., Komatsu, T., Arai, K., Yamazaki, T., Kijima, M., Shimizu, H., Takasawa, Y., Nakamura, J., Chem. Commun. 7, 840 (2004).Google Scholar
Yasuda, S., Furuya, A., Uchibori, Y., Kim, J., Murakoshi, K., Adv. Funct. Mater. 26, 738 (2016).Google Scholar
Celebi, K., Buchheim, J., Wyss, R.M., Droudian, A., Gasser, P., Shorubalko, I., Kye, J.-I., Lee, C., Park, H.G., Science 344, 289 (2014).Google Scholar
O’Hern, S.C., Jang, D., Bose, S., Idrobo, J.-C., Song, Y., Laoui, T., Kong, J., Karnik, R., Nano Lett. 15, 3254 (2015).CrossRefGoogle Scholar
Goh, K., Karahan, H.E., Wei, L., Bae, T.-H., Fane, A.G., Wang, R., Chen, Y., Carbon 109, 694 (2016).CrossRefGoogle Scholar
Noy, A., Park, H.G., Fornasiero, F., Holt, J.K., Grigoropoulos, C.P., Bakajin, O., Nano Today 2, 22 (2007).Google Scholar
Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., Kim, Y.H., Nat. Commun. 6, 7109 (2015).Google Scholar