Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:21:43.532Z Has data issue: false hasContentIssue false

Advances in light-emitting metal-halide perovskite nanocrystals

Published online by Cambridge University Press:  16 June 2020

Liang-Jin Xu
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, USA; [email protected]
Michael Worku
Affiliation:
Materials Science and Engineering Program, Florida State University, USA; [email protected]
Qingquan He
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, USA; [email protected]
Biwu Ma
Affiliation:
Department of Chemistry and Biochemistry, Florida State University, USA; [email protected]
Get access

Abstract

Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well.

Type
Halide Perovskite Opto- and Nanoelectronic Materials and Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
Yin, W.-J., Shi, T., Yan, Y., Appl. Phys. Lett. 104, 063903 (2014).CrossRefGoogle Scholar
Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J., Nat. Phys. 11, 582 (2015).CrossRefGoogle Scholar
Huang, H., Polavarapu, L., Sichert, J.A., Susha, A.S., Urban, A.S., Rogach, A.L., NPG Asia Mater. 8, e328 (2016).CrossRefGoogle Scholar
Schmidt, L.C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., Bolink, H.J., Galian, R.E., Pérez-Prieto, J., J. Am. Chem. Soc. 136, 850 (2014).CrossRefGoogle Scholar
Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A., Kovalenko, M.V., Nano Lett. 15, 3692 (2015).CrossRefGoogle Scholar
Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Grotevent, M.J., Kovalenko, M.V., Nano Lett. 15, 5635 (2015).CrossRefGoogle Scholar
Uddin, M.A., Calabro, R.L., Kim, D.Y., Graham, K.R., Nanoscale 10, 16919 (2018).CrossRefGoogle Scholar
Akkerman, Q.A., D'Innocenzo, V., Accornero, S., Scarpellini, A., Petrozza, A., Prato, M., Manna, L., J. Am. Chem. Soc. 137, 10276 (2015).CrossRefGoogle Scholar
Yan, A., Guo, Y., Liu, C., Deng, Z., Zhao, X., Nanoscale Res. Lett. 13, 185 (2018).CrossRefGoogle Scholar
Liu, H., Liu, Z., Xu, W., Yang, L., Liu, Y., Yao, D., Zhang, D., Zhang, H., Yang, B., ACS Appl. Mater. Interfaces 11, 14256 (2019).CrossRefGoogle Scholar
Parobek, D., Dong, Y., Qiao, T., Rossi, D., Son, D.H., J. Am. Chem. Soc. 139, 4358 (2017).CrossRefGoogle Scholar
Yoon, Y.J., Lee, K.T., Lee, T.K., Kim, S.H., Shin, Y.S., Walker, B., Park, S.Y., Heo, J., Lee, J., Kwak, S.K., Kim, G.-H., Kim, J.Y., Joule 2, 2105 (2018).CrossRefGoogle Scholar
Xu, L.J., Worku, M., He, Q., Lin, H., Zhou, C., Chen, B., Lin, X., Xin, Y., Ma, B., J. Phys. Chem. Lett. 10, 5836 (2019).CrossRefGoogle Scholar
Akkerman, Q.A., Motti, S.G., Srimath Kandada, A.R., Mosconi, E., D'Innocenzo, V., Bertoni, G., Marras, S., Kamino, B.A., Miranda, L., De Angelis, F., Petrozza, A., Prato, M., Manna, L., J. Am. Chem. Soc. 138, 1010 (2016).CrossRefGoogle Scholar
Sichert, J.A., Tong, Y., Mutz, N., Vollmer, M., Fischer, S., Milowska, K.Z., García Cortadella, R., Nickel, B., Cardenas-Daw, C., Stolarczyk, J.K., Urban, A.S., Feldmann, J., Nano Lett. 15, 6521 (2015).Google Scholar
Yuan, Z., Shu, Y., Xin, Y., Ma, B., Chem. Commun. 52, 3887 (2016).CrossRefGoogle Scholar
Pan, A., He, B., Fan, X., Liu, Z., Urban, J.J., Alivisatos, A.P., He, L., Liu, Y., ACS Nano 10, 7943 (2016).CrossRefGoogle Scholar
Worku, M., Tian, Y., Zhou, C., Lin, H., Chaaban, M., Xu, L.-J., He, Q., Beery, D., Zhou, Y., Lin, X., Su, Y.-F., Xin, Y., Ma, B., Sci. Adv. 6, eaaz5961 (2020).CrossRefGoogle Scholar
Zhang, F., Zhong, H., Chen, C., Wu, X.-g., Hu, X., Huang, H., Han, J., Zou, B., Dong, Y., ACS Nano 9, 4533 (2015).CrossRefGoogle Scholar
Kim, Y., Yassitepe, E., Voznyy, O., Comin, R., Walters, G., Gong, X., Kanjanaboos, P., Nogueira, A.F., Sargent, E.H., ACS Appl. Mater. Interfaces 7, 25007 (2015).CrossRefGoogle ScholarPubMed
Wang, Y., He, J., Chen, H., Chen, J., Zhu, R., Ma, P., Towers, A., Lin, Y., Gesquiere, A.J., Wu, S.T., Dong, Y., Adv. Mater. 28, 10710 (2016).CrossRefGoogle ScholarPubMed
Yu, J.C., Lee, A.-Y., Kim, D.B., Jung, E.D., Kim, D.W., Song, M.H., Adv. Mater. Technol. 2, 1700003 (2017).CrossRefGoogle Scholar
Zhou, Q., Bai, Z., Lu, W.G., Wang, Y., Zou, B., Zhong, H., Adv. Mater. 28, 9163 (2016).CrossRefGoogle Scholar
Tian, Y., Zhou, C., Worku, M., Wang, X., Ling, Y., Gao, H., Zhou, Y., Miao, Y., Guan, J., Ma, B., Adv. Mater. 30, 1707093 (2018).CrossRefGoogle Scholar
Zhao, L., Yeh, Y.W., Tran, N.L., Wu, F., Xiao, Z., Kerner, R.A., Lin, Y.L., Scholes, G.D., Yao, N., Rand, B.P., ACS Nano 11, 3957 (2017).CrossRefGoogle Scholar
Lee, J.W., Choi, Y.J., Yang, J.M., Ham, S., Jeon, S.K., Lee, J.Y., Song, Y.H., Ji, E.K., Yoon, D.H., Seo, S., Shin, H., Han, G.S., Jung, H.S., Kim, D., Park, N.G., ACS Nano 11, 3311 (2017).CrossRefGoogle Scholar
Xu, L.J., Worku, M., Lin, H., Xu, Z., He, Q., Zhou, C., Zhang, H., Xin, Y., Lteif, S., Xue, J., Ma, B., J. Phys. Chem. Lett. 10, 5923 (2019).CrossRefGoogle Scholar
Almeida, G., Infante, I., Manna, L., Science 364, 833 (2019).CrossRefGoogle Scholar
Zhang, B.B., Yuan, S., Ma, J.P., Zhou, Y., Hou, J.S., Chen, X.Y., Zheng, W., Shen, H.B., Wang, X.C., Sun, B.Q., Bakr, O.M., Liao, L.S., Sun, H.T., J. Am. Chem. Soc. 141, 15423 (2019).CrossRefGoogle Scholar
Krieg, F., Ochsenbein, S.T., Yakunin, S., ten Brinck, S., Aellen, P., Suess, A., Clerc, B., Guggisberg, D., Nazarenko, O., Shynkarenko, Y., Kumar, S., Shih, C.J., Infante, I., Kovalenko, M.V., ACS Energy Lett. 3, 641 (2018).CrossRefGoogle Scholar
Krieg, F., Ong, Q.K., Burian, M., Rainò, G., Naumenko, D., Amenitsch, H., Süess, A., Grotevent, M.J., Krumeich, F., Bodnarchuk, M.I., Shorubalko, I., Stellacci, F., Kovalenko, M.V., J. Am. Chem. Soc. 141, 19839 (2019).CrossRefGoogle Scholar
Ravi, V.K., Scheidt, R.A., Nag, A., Kuno, M., Kamat, P.V., ACS Energy Lett. 3, 1049 (2018).CrossRefGoogle Scholar
Quan, L.N., Quintero-Bermudez, R., Voznyy, O., Walters, G., Jain, A., Fan, J.Z., Zheng, X.L., Yang, Z.Y., Sargent, E.H., Adv. Mater. 29, 1605945 (2017).CrossRefGoogle Scholar
He, Y., Yoon, Y.J., Harn, Y.W., Biesold-McGee, G.V., Liang, S., Lin, C.H., Tsukruk, V.V., Thadhani, N., Kang, Z.T., Lin, Z.Q., Sci. Adv. 5, eaax4424 (2019).CrossRefGoogle Scholar
Liu, B., Altintas, Y., Wang, L., Shendre, S., Sharma, M., Sun, H., Mutlugun, E., Demir, H.V., Adv. Mater. 32, 1905824 (2019).CrossRefGoogle Scholar
Dirin, D.N., Benin, B.M., Yakunin, S., Krumeich, F., Raino, G., Frison, R., Kovalenko, M.V., ACS Nano 13, 11642 (2019).CrossRefGoogle Scholar
Cha, J.H., Noh, K., Yin, W., Lee, Y., Park, Y., Ahn, T.K., Mayoral, A., Kim, J., Jung, D.Y., Terasaki, O., J. Phys. Chem. Lett. 10, 2270 (2019).CrossRefGoogle Scholar
Pan, G.C., Bai, X., Yang, D.W., Chen, X., Jing, P.T., Qu, S.N., Zhang, L.J., Zhou, D.L., Zhu, J.Y., Xu, W., Dong, B., Song, H.W., Nano Lett. 17, 8005 (2017).CrossRefGoogle Scholar
Guvenc, C.M., Yalcinkaya, Y., Ozen, S., Sahin, H., Demir, M.M., J. Phys. Chem. C 123, 24865 (2019).CrossRefGoogle Scholar
Meyns, M., Peralvarez, M., Heuer-Jungemann, A., Hertog, W., Ibanez, M., Nafria, R., Genc, A., Arbiol, J., Kovalenko, M.V., Carreras, J., Cabot, A., Kanaras, A.G., ACS Appl. Mater. Interfaces 8, 19579 (2016).CrossRefGoogle Scholar
Huang, H., Chen, B., Wang, Z., Hung, T.F., Susha, A.S., Zhong, H., Rogach, A.L., Chem. Sci. 7, 5699 (2016).CrossRefGoogle Scholar
Chen, D., Fang, G., Chen, X., ACS Appl. Mater. Interfaces 9, 40477 (2017).CrossRefGoogle Scholar
Xuan, T., Yang, X., Lou, S., Huang, J., Liu, Y., Yu, J., Li, H., Wong, K.L., Wang, C., Wang, J., Nanoscale 9, 15286 (2017).CrossRefGoogle Scholar
Sun, C., Zhang, Y., Ruan, C., Yin, C., Wang, X., Wang, Y., Yu, W.W., Adv. Mater. 28, 10088 (2016).CrossRefGoogle Scholar
Yoon, H.C., Kang, H., Lee, S., Oh, J.H., Yang, H., Do, Y.R., ACS Appl. Mater. Interfaces 8, 18189 (2016).CrossRefGoogle Scholar
Zhou, Q., Bai, Z., Lu, W.G., Wang, Y., Zou, B., Zhong, H., Adv. Mater. 28, 9163 (2016).CrossRefGoogle Scholar
Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., Heo, J.H., Sadhanala, A., Myoung, N., Yoo, S., Im, S.H., Friend, R.H., Lee, T.-W., Science 350, 1222 (2015).CrossRefGoogle Scholar
Xiao, Z.G., Kerner, R.A., Zhao, L.F., Tran, N.L., Lee, K.M., Koh, T.W., Scholes, G.D., Rand, B.P., Nat. Photonics 11, 108 (2017).CrossRefGoogle Scholar
Song, J., Li, J., Li, X., Xu, L., Dong, Y., Zeng, H., Adv. Mater. 27, 7162 (2015).CrossRefGoogle Scholar
Li, J., Xu, L., Wang, T., Song, J., Chen, J., Xue, J., Dong, Y., Cai, B., Shan, Q., Han, B., Adv. Mater. 29, 1603885 (2017).CrossRefGoogle Scholar
Song, J., Fang, T., Li, J., Xu, L., Zhang, F., Han, B., Shan, Q., Zeng, H., Adv. Mater. 30, 1805409 (2018).CrossRefGoogle Scholar
Shen, X., Zhang, Y., Kershaw, S.V., Li, T., Wang, C., Zhang, X., Wang, W., Li, D., Wang, Y., Lu, M., Nano Lett. 19, 1552 (2019).CrossRefGoogle Scholar
Lu, M., Zhang, X., Bai, X., Wu, H., Shen, X., Zhang, Y., Zhang, W., Zheng, W., Song, H., Yu, W.W., ACS Energy Lett. 3, 1571 (2018).CrossRefGoogle Scholar
Xiao, Z., Kerner, R.A., Tran, N., Zhao, L., Scholes, G.D., Rand, B.P., Adv. Funct. Mater. 29, 1807284 (2019).CrossRefGoogle Scholar
Chiba, T., Hayashi, Y., Ebe, H., Hoshi, K., Sato, J., Sato, S., Pu, Y.-J., Ohisa, S., Kido, J., Nat. Photonics 12, 681 (2018).CrossRefGoogle Scholar
Liu, Y., Cui, J., Du, K., Tian, H., He, Z., Zhou, Q., Yang, Z., Deng, Y., Chen, D., Zuo, X., Nat. Photonics, 13, 760 (2019).CrossRefGoogle Scholar
Wang, H., Zhang, X., Wu, Q., Cao, F., Yang, D., Shang, Y., Ning, Z., Zhang, W., Zheng, W., Yan, Y., Nat. Commun. 10, 665 (2019).CrossRefGoogle Scholar
Chen, Q., Wu, J., Ou, X., Huang, B., Almutlaq, J., Zhumekenov, A.A., Guan, X., Han, S., Liang, L., Yi, Z., Nature 561, 88 (2018).CrossRefGoogle Scholar
Heo, J.H., Shin, D.H., Park, J.K., Kim, D.H., Lee, S.J., Im, S.H., Adv. Mater. 30, 1801743 (2018).CrossRefGoogle Scholar
Zhang, Y., Sun, R., Ou, X., Fu, K., Chen, Q., Ding, Y., Xu, L.-J., Liu, L., Han, Y., Malko, A.V., ACS Nano 13, 2520 (2019).CrossRefGoogle Scholar
Cao, F., Yu, D., ma, W., Xu, X., Cai, B., Yang, Y., Liu, S., He, L., Ke, Y., Lan, S., Choy, K.-L., Zeng, H., ACS Nano (2019), doi:10.1021/acsnano.9b06114.□Google Scholar