Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-21T21:32:05.793Z Has data issue: false hasContentIssue false

Adhesion of Polymers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The adhesion of a polymer to itself, to a different polymer, or to an inorganic material can often be one of its most important properties. Adhesives are normally polymers, but then so are nonstick coatings. Clearly, polymer adhesion can vary from very strong to extremely weak. Adhesion is a sufficiently complex and broad area that there are a range of approaches to its understanding. My approach here is one that attempts to bridge between the mechanics of crack propagation and the atomic-scale processes that occur at a crack tip. I will not be concerned with the details of the interface chemistry and its modification. The interface chemical approach is very useful in many practical situations but is often very specific to particular systems. Adhesion (or perhaps its inverse) can be considered a failure property. We can only measure the adhesion between two items by breaking the joint between them. I will be mainly concerned with failure by crack propagation using a fracture-mechanics approach.

I will first consider the general question of the effects of bulk mechanical properties on adhesion and then describe some recent work on fracture mechanics of biomaterial interfaces as it relates to polymer glasses. I will then change the focus to the scale of the polymer chain to consider local processes involved in adhesion.

Type
Polymer Surfaces and Interfaces
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kinloch, A.J., Adhesion and Adhesives, 1st ed. (Chapman and Hall, London, 1987) p. 441.CrossRefGoogle Scholar
2.Brown, H.R., Annu. Rev. Mater. Sci. 21 (1991) p. 463.CrossRefGoogle Scholar
3.Zosel, A., J. Adhesion 34 (1991) p. 201.CrossRefGoogle Scholar
4.Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29 (1991) p. 63.CrossRefGoogle Scholar
5.Thouless, M.D. and Jensen, H.M., J. Adhesion 38 (1992) p. 185.CrossRefGoogle Scholar
6.Brown, H.R., J. Mater. Sci. 25 (1990) p. 2791.CrossRefGoogle Scholar
7.Xiao, F., Hui, C-Y., Washiyama, J., and Kramer, E.J., Macromolecules 27 (1994) p. 4382.CrossRefGoogle Scholar
8.Cretan, C., Kramer, E.J., Hui, C-Y., and Brown, H.R., Macromolecules 25 (1992) p. 3075.CrossRefGoogle Scholar
9.Boucher, E., PhD thesis, Université Paris VI, 1995.Google Scholar
10.Cho, K., Brown, H.R., and Miller, D.C., J. Polym. Sci., Polym. Phys. Ed. 28 (1990) p. 1699.CrossRefGoogle Scholar
11.Xiao, F., Hui, C-Y., and Kramer, E.J., J. Mater. Sci. 28 (1993) p. 5620.CrossRefGoogle Scholar
12.Gent, A.N. and Thomas, A.G., J. Polym. Sci. A-2 10 (1972) p. 571.CrossRefGoogle Scholar
13.Kramer, E.J., Adv. Polym. Sci. 52/3 (1983) p. 1.Google Scholar
14.Brown, H.R., Deline, V.R., and Green, P.F., Nature 341 (1989) p. 221.CrossRefGoogle Scholar
15.Brown, H.R., Char, K., Deline, V.R., and Green, P.F., Macromolecules 26 (1993) p. 4155.CrossRefGoogle Scholar
16.Char, K., Brown, H.R., and Deline, V.R., Macromolecules 26 (1993) p. 4164.CrossRefGoogle Scholar
17.Cretan, C., Brown, H.R., and Deline, V.R., Macromolecules 27 (1994) p. 1774.CrossRefGoogle Scholar
18.Washiyama, J., Cretan, C., and Kramer, E.J., Macromolecules 25 (1992) p. 4751.CrossRefGoogle Scholar
19.Washiyama, J., Kramer, E.J., Cretan, C., and Hui, C.Y., Macromolecules 27 (1994) p. 2019.CrossRefGoogle Scholar
20.Brown, H.R., Macromolecules 24 (1991) p. 2752.CrossRefGoogle Scholar
21.Hui, C.Y., Ruina, A., Cretan, C., and Kramer, E.J., Macromolecules 25 (1992) p. 3949.CrossRefGoogle Scholar
22.Sha, Y., Hui, C.Y., Ruina, A., and Kramer, E.J., Macromolecules 28 (1995) p. 2450.CrossRefGoogle Scholar
23.Lee, L. and Char, K., Macromolecules 27 (1994) p. 2603.CrossRefGoogle Scholar
24.Norton, L.J., Smigolova, V., Pralle, M.U., Hubenko, A., Dai, K.H., Kramer, E.J., Hahn, S., Bergland, C., and DeKoven, B., Macromolecules 28 (1995) p. 1999.CrossRefGoogle Scholar
25.Dai, C-A., Dair, B.J., Dai, K.H., Ober, C.K., Kramer, E.J., Hui, C-Y., and Jelinski, L.W., Phys. Rev. Lett. 73 (1994) p. 2472.CrossRefGoogle Scholar
26.Kulesekare, R., Kaiser, H., Anker, J.F., Russell, T.P., Brown, H.R., and Hawker, C.J. “Homopolymer Interfaces Reinforced With Random Copolymers” (unpublished manuscript).Google Scholar
27.Cretan, C. and Leibler, L., J. Polym. Sci., Polym. Phys. Ed. (1995) in press.Google Scholar
28.Gent, A.N. and Kinloch, A.J., J. Polym. Sci. A2 9 (1971) p. 659.CrossRefGoogle Scholar
29.Andrews, E.H. and Kinloch, A.J., Proc. R. Soc. London A 332 (1973) p. 385.Google Scholar
30.Newby, B-m.Z., Chaudhury, M.K., and Brown, H.R., Science 269 (1995) p. 1407.CrossRefGoogle Scholar
31.Gent, A.N. and Lai, S., J. Polym. Sci. Polym. Phys. Ed. 32 (1994) p. 1543.CrossRefGoogle Scholar
32.Ahagon, A. and Gent, A.N., J. Polym. Sci., Polym. Phys. Ed. 13 (1975) p. 1285.CrossRefGoogle Scholar
33.Lake, G.J. and Thomas, A.G., Proc. R. Soc. London, A 300 (1967) p. 108.Google Scholar
34.Raphaël, E. and de Gennes, P.G., J. Phys. Chem. 96 (1992) p. 4002.CrossRefGoogle Scholar
35.Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. R. Soc. London, A 324 (1971) p. 301.Google Scholar
36.Cretan, C., Brown, H.R., and Shull, K.R., Macromolecules 27 (1994) p. 3174.CrossRefGoogle Scholar
37.Deruelle, M., Léger, L., and Tirrell, M., Macromolecules (1995) in press.Google Scholar
38.Brown, H.R., Hu, W., Koberstein, J.T., and Gallot, Y., “Adhesion Enhancement of a Polystyrene Poly(dimethyl siloxane) Interface in the Presence of the Diblock Copolymer Poly (sty rene-b-dimethylsiloxane)” (unpublished manuscript).Google Scholar
39.Mangipudi, V.S., Huang, E., Tirrell, M., and Pocius, A.V., Macromol. Symp. (1995) in press.Google Scholar