Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T08:35:05.477Z Has data issue: false hasContentIssue false

3DXRD Characterization and Modeling of Solid-State Transformation Processes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Three-dimensional x-ray diffraction (3DXRD) allows nondestructive characterization of grains, orientations, and stresses in bulk microstructures and, therefore, enables in situ studies of the structural dynamics during processing. The method is described briefly, and its potential for providing new data valuable for validation of various models of microstructural evolution is discussed. Examples of 3DXRD measurements related to recrystallization and to solid-state phase transformations in metals are described. 3DXRD measurements have led to new modeling activity predicting the evolution of metallic microstructures with much more detail than hitherto possible. Among these modeling activities are three-dimensional (3D) geometric modeling, 3D molecular dynamics modeling, 3D phase-field modeling, two-dimensional (2D) cellular automata, and 2D Monte Carlo simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Furuhara, T., Shinyoshi, T., Miyamoto, G., Yamaguchi, J., Sugita, N., Kimura, N., Takemura, N., Maki, T., ISIJ Int. 43, 2028 (2003).Google Scholar
2.Ivanisenko, Yu., MacLaren, I., Sauvage, X., Valiev, R.Z., Fecht, H.-J., Acta Mater. 54, 1659 (2006).CrossRefGoogle Scholar
3.Reynolds, W.T. Jr, Brenner, S.S., Aaronson, H.I., Scripta Metall. 22, 1343 (1988).Google Scholar
4.Pereloma, E.V., Timokhina, I.B., Miller, M.K., Hodgson, P.D., Acta Mater. 55, 2587 (2007).CrossRefGoogle Scholar
5.Lange, W.F., Enomoto, M., Aaronson, H.I., Metall. Trans. A 19, 427 (1988).CrossRefGoogle Scholar
6.Adachi, Y., Hakata, K., Tsuzaki, K., Mater. Sci. Eng. A 412, 252 (2005).Google Scholar
7.Landheer, H., Offerman, S.E., Petrov, R.H., Kestens, L.A.I., Mater. Sci. Forum 558–559, 1413 (2007).Google Scholar
8.Gourgues-Lorenzon, A.F., Int. Mater. Rev. 52, 65 (2007).CrossRefGoogle Scholar
9.Poulsen, H.F., Garbe, S., Lorentzen, T., Juul Jensen, D., Poulsen, F.W., Andersen, N.H., Frello, T., Feidenhansl, R., Graafsma, H., J. Synchrotron Radiat. 4, 147 (1997).CrossRefGoogle Scholar
10.Lauridsen, E.M., Juul Jensen, D., Poulsen, H.F., Lienert, U., Scripta Mater. 43, 561 (2000).CrossRefGoogle Scholar
11.Margulies, L., Winther, G., Poulsen, H.F., Science 291, 2392 (2001).Google Scholar
12.Offerman, S.E., van Dijk, N.H., Sietsma, J., Grigull, S., Lauridsen, E.M., Margulies, L., Poulsen, H.F., Rekveldt, M.T., van der Zwaag, S., Science 298, 1003 (2002).CrossRefGoogle Scholar
13.Lauridsen, E.M., Poulsen, H.F., Nielsen, S.F., Juul Jensen, D., Acta Mater. 51, 4423 (2003).Google Scholar
14.Poulsen, H.F., Three-Dimensional X-Ray Diffraction Microscopy—Mapping Polycrystals and Their Dynamics (Springer, Berlin, 2004).Google Scholar
15.Schmidt, S., Nielsen, S.F., Gundlach, C., Margulies, L., Huang, X., Juul Jensen, D., Science 305, 229 (2004).Google Scholar
16.Juul Jensen, D., Poulsen, H.F., Kvik, Å., Encyclopedia of Materials: Science and Technology, Updates (Elsevier, Oxford, UK, 2005), pp. 16.Google Scholar
17.Jakobsen, B., Poulsen, H.F., Lienert, U., Almer, J., Shastri, S.D., Sorensen, H.O., Gundlach, C., Pantleon, W., Science 312, 889 (2006).Google Scholar
18.Pantleon, W., Poulsen, H.F., Almer, J., Lienert, U., Mater. Sci. Eng. A 387, 339 (2004).CrossRefGoogle Scholar
19.Iqbal, N., van Dijk, N.H., Offerman, S.E., Moret, M.P., Katgerman, L., Kearley, G.J., Acta Mater. 53, 2875 (2005).Google Scholar
20.Jimenez-Melero, E., van Dijk, N.H., Zhao, L., Sietsma, J., Offerman, S.E., Wright, J.P., van der Zwaag, S., Scripta Mater. 56, 421 (2007).Google Scholar
21.Banhart, J., Ed., Advanced Tomographic Methods in Materials Research and Engineering (Oxford University Press, Oxford, UK, 2008).CrossRefGoogle Scholar
22.Ice, G.E., Mater. World 8 (5), 20 (2000).Google Scholar
23.Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., Nature 415, 887 (2002).Google Scholar
24.Bunge, H.J., Wcislak, L., Klein, H., Garbe, U., Schneider, J.R., Adv. Eng. Mater. 4, 300 (2002).3.0.CO;2-Q>CrossRefGoogle Scholar
25.Bunge, H.J., Textures Microstruct. 35, 253 (2003).Google Scholar
26.Preusser, A., Klein, H., Bunge, H.J., Solid State Phenom. 105, 3 (2005).Google Scholar
27.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
28.Vandermeer, R.A., Kinetic aspects of nucle-ation and growth in recrystallization, Hansen, N., Huang, X., Juul Jensen, D., Lauridsen, E.M., Leffers, T., Pantleon, W., Sabin, T.J., Wert, J.A., Eds. (Risø National Laboratory, Roskilde, Denmark, 2000), p. 179.Google Scholar
29.Godiksen, R.B., Schmidt, S., Juul Jensen, D., Scripta Mater. 57, 345 (2007).Google Scholar
30.Martorano, M.A., Fortes, M.A., Padilha, A.F., Acta Mater. 54, 2769 (2006).Google Scholar
31.Godiksen, R.B., Trautt, Z.T., Upmanyu, M., Schiøtz, J., Juul Jensen, D., Schmidt, S., Acta Mater. 55, 6383 (2007).CrossRefGoogle Scholar
32.Juul Jensen, D., Rowenhorst, D.J., Schmidt, S., Misorientation aspects of growth during recrystal-lization, Kang, S.-J.L., Huh, M.Y., Hwan, N.M., Homma, H., Ushioda, K., Ikuhara, Y., Eds. (Trans Tech Publications Ltd., Zurich, Switzerland, 2007), p. 85.Google Scholar
33.Offerman, S.E., Science 305, 190 (2004).Google Scholar
34.Offerman, S.E., van Dijk, N.H., Sietsma, J., van der Zwaag, S., Lauridsen, E.M., Margulies, L., Grigull, S., Poulsen, H.F., Scripta Mater. 51, 937 (2004).Google Scholar
35.Offerman, S.E., van Dijk, N.H., Sietsma, J., Lauridsen, E.M., Margulies, L., Grigull, S., Poulsen, H.F., van der Zwaag, S., Acta Mater. 52, 4757 (2004).CrossRefGoogle Scholar
36.Offerman, S.E., van Dijk, N.H., Sietsma, J., Lauridsen, E.M., Margulies, L., Grigull, S., Poulsen, H.F., van der Zwaag, S., Nucl. Instrum. Methods Phys. Res., Sect. B 246, 194 (2006).CrossRefGoogle Scholar
37.Offerman, S.E., Strandlund, H., van Dijk, N.H., Sietsma, J., Lauridsen, E.M., Margulies, L., Poulsen, H.F., Ågren, J., van der Zwaag, S., Mater. Sci. Forum 550, 357 (2007).Google Scholar
38.Krill, C.E., Helfen, L., Michels, D., Natter, H., Fitch, A., Masson, O., Birringer, R., Phys. Rev. Lett. 86, 842 (2001).CrossRefGoogle Scholar
39.van Dijk, N.H., Offerman, S.E., Sietsma, J., van der Zwaag, S., Acta Mater. 55, 4489 (2007).Google Scholar
40.Mecozzi, M.G., Sietsma, J., van der Zwaag, S., Acta Mater. 54, 1431 (2006).Google Scholar
41.Militzer, M., Mecozzi, M.G., Sietsma, J., van der Zwaag, S., Acta Mater. 54, 3961 (2006).Google Scholar
42.Zener, C., J. Appl. Phys. 20, 950 (1949).Google Scholar
43.Li, D.Z., Xiao, N.M., Lan, Y.J., Zheng, C.W., Li, Y.Y., Acta Mater. 55, 6234 (2007).Google Scholar
44.Devincre, B., Kubin, L., Hoc, T., Scipta Mater. 54, 741 (2006).Google Scholar
45.Bulatov, V.V., Hsiung, L.L., Tang, M., Arsenlis, A., Bartelt, M. C., Cai, W., Florando, J. N., Hiratani, M., Rhee, M., Hommes, G., Pierce, T. G., de la Rubia, T. Diaz, Nature 440, 1174 (2006).Google Scholar
46.Raabe, D., Roters, F., Barlat, F., Chen, L.Q., Eds., Continuum Scale Simulation of Engineering Materials: Fundamentals—Microstructures— Process Applications (Wiley-VCH, Weinheim, Germany, 2004).Google Scholar
47.Ghoniem, N.M., Ed., Proceedings of the Second International Conference on Multiscale Materials Modeling (UCLA Publications, Los Angeles, CA, 2004).Google Scholar
48.Thornton, K., Ågren, J., Voorhees, P.W., Acta Mater. 51, 5675 (2003).CrossRefGoogle Scholar