Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T14:59:02.822Z Has data issue: false hasContentIssue false

3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds

Published online by Cambridge University Press:  12 February 2015

Erin P. Childers
Affiliation:
Department of Polymer Science, The University of Akron, USA; [email protected]
Martha O. Wang
Affiliation:
Fischell Department of Bioengineering, University of Maryland, USA; [email protected]
Matthew L. Becker
Affiliation:
Department of Polymer Science, The University of Akron, USA; [email protected]
John P. Fisher
Affiliation:
Fischell Department of Bioengineering, University of Maryland, USA; [email protected]
David Dean
Affiliation:
Department of Plastic Surgery, The Ohio State University, USA; [email protected]
Get access

Abstract

Efficient, reproducible, and precise methodologies for fabricating tissue engineering (TE) scaffolds using three-dimensional (3D) printing techniques are evaluated. Fusion deposition modeling, laser sintering, and photo printing each have limitations, including the materials that can be used with each printing system. However, new and promising resorbable materials are surfacing as alternatives to previously studied resorbable TE materials for 3D printing. One such resorbable polymer is poly(propylene fumarate) (PPF), which can be printed using photocross-linking 3D printing. The ability to print new materials opens up TE to a wide range of possibilities not previously available. The ability to control precise geometries, porosity, degradation, and functionalities present on 3D printable polymers such as PPF shows a new layer of complexity available for the design and fabrication of TE scaffolds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Langer, R., Pharm. Res. 14 (7), 840 (1997).Google Scholar
Neufurth, M., Wang, X.H., Schroder, H.C., Feng, Q.L., Diehl-Seifert, B., Ziebart, T., Steffen, R., Wang, S.F., Muller, W.E.G., Biomaterials 35 (31), 8810 (2014).Google Scholar
Scaglione, S., Ceseracciu, L., Aiello, M., Coluccino, L., Ferrazzo, F., Giannoni, P., Quarto, R., Biotechnol. Bioeng. 111 (10), 2107 (2014).CrossRefGoogle Scholar
Thadavirul, N., Pavasant, P., Supaphol, P., J. Biomed. Mater. Res. A 102 (10), 3379 (2014).Google Scholar
Xuan, Y.W., Tang, H., Wu, B., Ding, X.Y., Lu, Z.Y., Li, W., Xu, Z.F., J. Biomed. Mater. Res. A 102 (10), 3401 (2014).Google Scholar
Yahya, W.N.W., Kadri, N.A., Ibrahim, F., Sensors 14 (7), 11714 (2014).CrossRefGoogle Scholar
Fishman, J.M., Lowdell, M., Birchall, M.A., Semin. Pediatr. Surg. 23 (3), 119 (2014).CrossRefGoogle Scholar
Zhang, Z.P., Gupte, M.J., Ma, P.X., Expert Opin. Biol. Ther. 13 (4), 527 (2013).CrossRefGoogle Scholar
Hollister, S.J., Murphy, W.L., Tissue Eng. Part B 17 (6), 459 (2011).Google Scholar
Evangelatov, A., Pankov, R., J. Tissue Eng. Regen. Med. (2013), doi: 10.5772/55564.Google Scholar
Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C., J. Biomed. Mater. Res. B 74B (2), 782 (2005).CrossRefGoogle Scholar
Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumaret, D.S., Int. J. Polym. Sci. (2011), doi: 10.1155/2011/290602.Google Scholar
Tang, W., Becker, M.L., Chem. Soc. Rev. 43 (20), 7013 (2014).CrossRefGoogle Scholar
Li, X., Cui, R., Sun, L., Aifantis, K.E., Fan, Y., Feng, Q., Cui, F., Watari, F., Int. J. Polym. Sci. (2014), doi: 10.1155/2014/829145.Google Scholar
Chen, Q., Liang, S., Thouas, G.A., Prog. Polym. Sci. 38 (34), 584 (2013).CrossRefGoogle Scholar
Stakleff, K.S., Lin, F., Smith Callahan, L.A., Wade, M.B., Esterle, A., Miller, J., Graham, M., Becker, M.L., Acta Biomater. 9 (2), 5132 (2013).Google Scholar
Aamer, K.A., Stafford, C.M., Richter, L.J., Kohn, J., Becker, M.L., Macromolecules 42 (4), 1212 (2009).CrossRefGoogle Scholar
Fisher, J.P., Holland, T.A., Dean, D., Engel, P.S., Mikos, A.G., J. Biomater. Sci. Polym. Ed. 12 (6), 673 (2001).Google Scholar
Schruben, D.L., Gonzalez, P., Polym. Eng. Sci. 40 (1), 139 (2000).Google Scholar
Ebewele, R.O., Polymer Science and Technology (Taylor & Francis, New York, 2000).Google Scholar
Rajagopal, P., Chitre, V., Aras, M., Indian J. Dent. Res. 23 (2), 152 (2012).Google Scholar
Takaichi, A., Wakabayashi, N., Igarashi, Y., Contemp. Clin. Dent. 2 (4), 402 (2011).Google Scholar
Yoon, J.J., Kim, J.H., Park, T.G., Biomaterials 24 (13), 2323 (2003).Google Scholar
Joerg, K.V.T., Theresa, A.H., Antonios, G.M., in Scaffolding in Tissue Engineering (CRC Press, Boca Raton, FL, 2005), pp. 111124.Google Scholar
Reneker, D.H., Yarin, A.L., Polymer 49 (10), 2387 (2008).Google Scholar
Zheng, J., Liu, K., Reneker, D.H., Becker, M.L., J. Am. Chem. Soc. 134 (41), 17274 (2012).Google Scholar
Zheng, J., Xie, S., Lin, F., Hua, G., Yu, T., Reneker, D.H., Becker, M.L., Polym. Chem. 4 (7), 2215 (2013).Google Scholar
Goodridge, R.D., Tuck, C.J., Hague, R.J.M., Prog. Mater. Sci. 57 (2), 229 (2012).Google Scholar
Dean, D., Jonathan, W., Siblani, A., Wang, M.O., Kim, K., Mikos, A.G., Fisher, J.P., Virtual Phys. Prototyp. 7 (1), 13 (2012).Google Scholar
Farahani, R.D., Chizari, K., Therriault, D., Nanoscale 6 (18), 10470 (2014).Google Scholar
Kim, J., McBride, S., Tellis, B., Alvarez-Urena, P., Song, Y.H., Dean, D.D., Sylvia, V.L., Elgendy, H., Ong, J., Hollinger, J.O., Biofabrication 4 (2), 025003 (2012).Google Scholar
Ringeisen, N.B.R., Spargo, B.J., Wu, P.K., Eds., Cell and Organ Printing (Springer, The Netherlands, 2010), pp. 225239.Google Scholar
Jensen, J., Rölfing, J.H., Svend Le, D.Q., Kristiansen, A.A., Nygaard, J.V., Hokland, L.B., Bendtsen, M., Kassem, M., Lysdahl, H., Bünger, C.E., J. Biomed. Mater. Res. A 102 (9), 2993 (2014).Google Scholar
Masood, S.H., Song, W.Q., Mater. Des. 25 (7), 587 (2004).CrossRefGoogle Scholar
Ju-Yeon, L., Bogyu, C., Benjamin, W., Min, L., Biofabrication 5 (4), 045003 (2013).Google Scholar
Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., Müller, R., Acta Biomater. 7 (3), 907 (2011).Google Scholar
Xu, T., Zhao, W., Zhu, J.-M., Albanna, M.Z., Yoo, J.J., Atala, A., Biomaterials 34 (1), 130 (2013).Google Scholar
Dias, M.R., Guedes, J.M., Flanagan, C.L., Hollister, S.J., Fernandes, P.R., Med. Eng. Phys. 36 (4), 448 (2014).Google Scholar
Bártolo, P.J., Stereolithography: Materials, Processes and Applications (Springer, New York, 2011).Google Scholar
Probst, F.A., Hutmacher, D.W., Müller, D.F., Machens, H.G., Schantz, J.T., Handchir. Mikrochir. P. 42 (6), 369 (2010).Google Scholar
Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R., Biomaterials 27 (18), 3413 (2006).Google Scholar
Lewandrowski, K.U., Cattaneo, M.V., Gresser, J.D., Wise, D.L., White, R.L., Bonassar, L., Trantolo, D.J., Tissue Eng. 5 (4), 305 (1999).CrossRefGoogle Scholar
Kim, J., Bae, W.-G., Choung, H.-W., Lim, K.T., Seonwoo, H., Jeong, H.E., Suh, K.-Y., Jeon, N.L., Choung, P.-H., Chung, J. H., Biomaterials 35 (33), 9058 (2014).Google Scholar
Faia-Torres, A.B., Guimond-Lischer, S., Rottmar, M., Charnley, M., Goren, T., Maniura-Weber, K., Spencer, N.D., Reis, R.L., Textor, M., Neves, N.M., Biomaterials 35 (33), 9023 (2014).Google Scholar
Hu, Y., Zou, S., Chen, W., Tong, Z., Wang, C., Colloids Surf. B 122, 559 (2014).Google Scholar
Mitchell, A., Kim, B., Cottrell, J., Snyder, S., Witek, L., Ricci, J., Uhrich, K.E., O’Connor, J.P., J. Biomed. Mater. Res. A 102 (3), 655 (2014).Google Scholar
Benz, M.E., Tenbroek, E.M., Luo, L.L., “Therapeutic Polymers and Methods of Generation,” US Patent 20110082266 A1 (April 7, 2011).Google Scholar
Smith Callahan, L.A., Ganios, A.M., Childers, E.P., Weiner, S.D., Beckeret, M.L., Acta Biomater. 9 (4), 6095 (2013).Google Scholar
Khatiwala, C.B., Peyton, S.R., Putnam, A.J., Am. J. Physiol. Cell Physiol. 290, C1640 (2006).Google Scholar
Rowlands, A.S., George, P.A., Cooper-White, J.J., Am. J. Physiol. Cell Physiol. 295, C1037 (2008).Google Scholar
Peyton, S.R., Kim, P.D., Ghajar, C.M., Seliktar, D., Putnam, A.J., Biomaterials 29 (17), 2597 (2008).Google Scholar
Webb, A.R., Yang, J., Ameer, G.A., Expert Opin. Biol. Ther. 4 (6), 801 (2004).CrossRefGoogle Scholar
Hadjidakis, D.J., Androulakis, I.I., Ann. N.Y. Acad. Sci. 1092 (1), 385 (2006).Google Scholar
Raggatt, L.J., Partridge, N.C., J. Biol. Chem. 285 (33), 25103 (2010).Google Scholar
Göpferich, A., Biomaterials 17 (2), 103 (1996).Google Scholar
Burkersroda, F.V., Schedl, L., Göpferich, A., Biomaterials 23 (21), 4221 (2002).CrossRefGoogle Scholar
He, S., Timmer, M.D., Yaszemski, M.J., Yasko, A.W., Engel, P.S., Mikos, A.G., Polymer 42 (3), 1251 (2001).Google Scholar
Sanderson, J.E., “Bone Replacement and Repair Putty Material from Unsaturated Polyester Resin and Vinyl Pyrrolidone,” US Patent 4,722,948 (February 2, 1988).Google Scholar
Gerhart, T.N., Hayes, W.C., “Bioerodible Implant Composition,” US Patent 4,843,112 (June 27, 1989).Google Scholar
Domb, A.J., “Poly(Propylene Glycol Fumarate) Compositions for Biomedical Applications,” US Patent 4,888,413 (December 19 1989).Google Scholar
Domb, A.J., Kost, J., Wiseman, D.M., Handbook of Biodegradable Polymers (Harwood Academic Publishers, Singapore, 1997), pp. 8797.Google Scholar
Yaszemski, M.J., Mikos, A.G., Payne, R.G., Hayes, W.C., Mater. Res. Soc. Symp. Proc. 331 (Materials Research Society, Pittsburgh, 1994).Google Scholar
Yaszemski, M.J., Payne, R.G., Mikos, A.G., “Poly(Propylene Fumarate),” US Patent 5733951 (March 31, 1998).Google Scholar
DiCiccio, A.M., Coates, G.W., J. Am. Chem. Soc. 133, 10724 (2011).Google Scholar
Lee, K.W., Wang, S., Lu, L., Jabbari, E., Currier, B.L., Yaszemski, M.J., Tissue Eng. 12 (10), 2801 (2006).Google Scholar
Curtis, A., Wilkinson, C., Biomaterials 18 (24), 1573 (1997).Google Scholar
Curtis, A.S.G., Wilkinson, C.D.W., J. Biomater. Sci. Polym. Ed. 9 (12), 1313 (1998).Google Scholar
Flemming, R.G., Murphy, C.J., Abrams, G.A., Goodman, S.L., Nealey, P.F., Biomaterials 20 (6), 573 (1999).Google Scholar
Atala, A., Ed., Foundations of Regenerative Medicine: Clinical and Therapeutic Applications 1st. ed. (Academic Press, Amsterdam, 2010).Google Scholar
Kidambi, S., Murphy, C.J., Abrams, G.A., Goodman, S.L., Nealey, P.F., Tissue Eng. 13 (8), 2105 (2007).Google Scholar
McInnes, C., Knox, P., Winterbourne, D.J., J. Cell Sci. 88 (5), 623 (1987).Google Scholar
Liu, Y., Li, J.P., Hunziker, E.B., de Groot, K., Philos. Trans. R. Soc. Lond. Ser. A 364 (1838), 233 (2006).Google Scholar
Morra, M., Cassinelli, C., Cascardo, G., Mazzucco, L., Borzini, P., Fini, M., Giavaresi, G., Giardino, R., J. Biomed. Mater. Res. A 78A (3), 449 (2006).Google Scholar
Zhang, M., Desai, T., Ferrari, M., Biomaterials 19 (10), 953 (1998).Google Scholar
Knabe, C., Howlett, C.R., Klar, F., Zreiqat, H., J. Biomed. Mater. Res. A 71A (1), 98 (2004).CrossRefGoogle Scholar
Glassman, S.D., Carreon, L., Djurasovic, M., Campbell, M.J., Puno, R.M., Johnson, J.R., Dimar, J.R., Spine J. 7 (1), 44 (2007).Google Scholar
Wong, D.A., Kumar, A., Jatana, S., Ghiselli, G., Wong, K., Spine J. 8 (6), 1011 (2008).Google Scholar
Carragee, E.J., Hurwitz, E.L., Weiner, B.K., Spine J. 11 (6), 471 (2011).CrossRefGoogle Scholar
Dong, J., Wang, Y., Zhang, J., Zhan, X., Zhu, S., Yang, H., Wang, G., Soft Matter 9 (2), 370 (2013).Google Scholar
Suárez-González, D., Lee, J.S., Lan Levengood, S.K., Vanderby, R. Jr., Murphy, W.L., Acta Biomater. 8 (3), 1117 (2012).Google Scholar
Hein, C., Liu, X.-M., Wang, D., Pharm. Res. 25 (10), 2216 (2008).Google Scholar
Lin, F., Yu, J., Tang, W., Zheng, J., Xie, S., Becker, M.L., Macromolecules 46 (24), 9515 (2013).CrossRefGoogle Scholar
Smith Callahan, L.A., Xie, S., Barker, I.A., Zheng, J., Reneker, D.H., Dove, A.P., Becker, M.L., Biomaterials 34 (36), 9089 (2013).Google Scholar
Moretti, M., Wendt, D., Dickinson, S.C., Sims, T.J., Hollander, A.P., Kelly, D.J., Prendergast, P.J., Heberer, M., Martin, I., Tissue Eng. 11 (910), 1421 (2005).Google Scholar
Shahin, K., Doran, P.M., PLoS One 6 (8), e23119 (2011).Google Scholar
Schaer, T.P., Stewart, S., Hsu, B.B., Klibanov, A.M., Biomaterials 33 (5), 1245 (2012).Google Scholar