Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T20:55:55.708Z Has data issue: false hasContentIssue false

ZnO1-xTex thin films deposited by reactive magnetron co-sputtering: composition, structure and optical properties

Published online by Cambridge University Press:  15 May 2017

O. Sánchez*
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC). Sor Juana Inés de la Cruz, 3, 28049 Madrid. Spain
A. Climent
Affiliation:
Dpto. Física Aplicada Universidad. Autónoma de Madrid, Cantoblanco 28049 Madrid. Spain
M. Fernández Barcia
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC). Sor Juana Inés de la Cruz, 3, 28049 Madrid. Spain Dpto. Física Aplicada Universidad. Autónoma de Madrid, Cantoblanco 28049 Madrid. Spain
O. Martínez Sacristán
Affiliation:
UGdS-Optronlab Group, Universidad de Valladolid, P° de Belén 11, 47011-Valladolid, Spain
M. Hernández-Vélez
Affiliation:
Dpto. Física Aplicada Universidad. Autónoma de Madrid, Cantoblanco 28049 Madrid. Spain
*
(Email: [email protected])
Get access

Abstract

ZnO1-xTex thin films were deposited by DC reactive magnetron co-sputtering using pure Zn and Te targets. Te atomic concentration in the films ranged from x=0 to 0.33 by adjusting the applied power on the targets or varying the cathode-substrate distance. Chemical composition and crystalline structure were determined by RBS experiments and X-ray Diffraction, respectively. For low Te atomic concentrations (x≤0.04) the deposited ZnO1-xTex films showed a crystalline structure ZnO wurtzite type however, for increasing Te concentration significant broadening and decreasing intensities of the main peaks belonging to pure ZnO films together with some weak peaks characteristic of crystalline Trizinc Tellurate salt have appeared. For the highest x values some non-identified weak peaks beside to some others peaks corresponding to the crystalline phases mentioned above as well as, a broad band probably associated to amorphous TeO2 phase were observed. A preliminary optical characterization of the samples point out the possibility of different electronic transitions within the ZnO band gap.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

currently at Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, 01069 Dresden. Germany

References

REFERENCES

Kuprenaite, S., Murauskas, T., Abrutis, A., Kubilius, V., Saltyte, Z., Plausinaitiene, V., Surf. & Coat. Techn. 271, 156 (2015).Google Scholar
Shewale, P.S., Lee, N.K., Lee, S.H., Kang, K.Y., Yu, Y.S., Journal of Alloys and Comp. 624, 251 (2015).Google Scholar
Iribarren, A., Fernández, P. and Piqueras, J., Phys. Status Solidi. B 251, 683 (2014).CrossRefGoogle Scholar
Park, S. H., Minegishi, T., Oh, D-H., Kim, D-J., Chang, J-H., Yao, T, Taishi, T. and Yonenaga, I., Jp. J. Appl. Phys. 52, 055501 (2013).Google Scholar
Ting, M., dos Reis, R., Jaquez, M., Dubon, O.D., Mao, S.S., Yu, K.M. and Walukiewicz, W., Appl. Phys. Lett. 106, 092101 (2015).CrossRefGoogle Scholar
Singh, P. K., Nagarale, R. K., Pandey, S. P., Rhee, H. W. and Bhattacharya, B., Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 023002 (2011).Google Scholar
Constable, E. and Lewis, R. A., J. of Appl. Phys. 112, 063104 (2012)Google Scholar
Okada, Y., Ekins-Daukes, N. J., Kita, T., Tamaki, R., Yoshida, M., Pusch, A., Hess, O., Phillips, C. C., Farrell, D. J., Yoshida, K., Ahsan, N., Shoji, Y., Sogabe, T., and Guillemoles, J.-F., Appl. Phys. Rev. 2, 021302 (2015).CrossRefGoogle Scholar
Jamali-Sheinia, F., Yousefib, R., Mahmoudianc, M.R., Ali Bakrd, N., Saaedie, A., Huang, N. M., Ceramics International 40, 7737(2014).Google Scholar
Tang, K., Gu, S.L., Zhu, S.M., Zhang, R., Zheng, Y.D., J. Semiconductors, 37, 031001 (2016).Google Scholar
Sahu, R., Dileep, K., Negi, D.S., Nagaraja, K.K., Shetty, S., Datta, R., J. of Crys. Growth, 410, 69 (2015)Google Scholar
Lee, D.U., Kim, S.P., Lee, K.S., Pak, S. W., Kim, E.K., Appl. Phys. Lett., 103, 263901 (2013).CrossRefGoogle Scholar
Huan-sheng, C., Jiayong, H.T., Fujia, Y., Nucl. Instrum. and Meth., B. 83, 449 (1993).CrossRefGoogle Scholar
Mayer, M., SIMNRA User’s Guide, IPP 9/113 (1997).Google Scholar
PCPDFWIN version 2.2 © 2001 JCPDS-ICDDGoogle Scholar
Iribarren, A., Fernandez, P. Piqueras, J., Supperlattices and Microstructures, 43, 600 (2008).Google Scholar