Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T20:51:20.942Z Has data issue: false hasContentIssue false

Zn2+- Controlled Crystallization and Microstructure in K-Li-Mg-B-Si-Al-F Glass

Published online by Cambridge University Press:  10 July 2018

Mrinmoy Garai*
Affiliation:
Materials Science Centre, Indian Institute of Technology, Kharagpur-721302, India
Anoop K. Maurya
Affiliation:
Materials Science Centre, Indian Institute of Technology, Kharagpur-721302, India
Shibayan Roy
Affiliation:
Materials Science Centre, Indian Institute of Technology, Kharagpur-721302, India
*
Get access

Abstract text:

The crystallization of (9-X) K2O-1Li2O-12MgO-10B2O3-40SiO2-16Al2O3-12MgF2-X PbO/BaO/ZnO (X =0/5) composition (wt.%) were studied by means of dilatometry, DSC, XRD, SEM and microhardness analysis. Density of base K-Li-Mg-B-Si-Al-F glass (2.59 g.cm–3) is found to be increased on addition of the network modifier oxides PbO, BaO and ZnO content. Addition of Pb2+, Ba2+ and Zn2+ furthermore increased the glass transition temperature (Tg.). A characteristic exothermic hump is found to be appeared in DSC thermograph at the temperature range 800-950°C; and that is ascribed to the formation of crystalline phase fluorophlogopite mica, KMg3(AlSi3O10)F2. Opaque glass-ceramics were prepared from K-Li-Mg-B-Si-Al-F glasses (with and without containing PbO, BaO and ZnO content) by controlled heat-treatment at 1000°C. Interlocked type microstructure combined of flake like fluorophlogopite mica crystals is obtained in ZnO-containing K-Li-Mg-B-Si-Al-F glass-ceramic; and such microstructural pattern is ascribed to cause large thermal-expansion (>11.5×10-6/K, 50-800°C).Vickers Microhardness of base glass-ceramic (5.12 GPa) is increased when contains ZnO (5.26 GPa). ZnO-containing boroaluminosilicate glass-ceramic is, hence, considered with potential interest as they can exhibit the microcrack resistivity in high temperature recycling operation (like SOFC).

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoda, S.N., Beall, G.H., “Alkaline Earth Mica Glass-ceramics” In: Simmons, J. H., Uhlmann, D. R., Beall, G. H. (Editors), Advances in Nucleation and Crystallization in Glasses, The American Ceramic Society, Westerville, pp. 287300 (1982).Google Scholar
McMillan, P. W., Partridge, G., J. Mater. Sci. 7, 847 (1972).CrossRefGoogle Scholar
Holand, W., Beall, G. H., Glass-Ceramic Technology, The American Ceramic Society, Westerville, Ohio, USA, 2002.Google Scholar
Garai, M., Sasmal, N., Karmakar, B., Ind. J. Mater. Sci., 638341, 1 (2015).Google Scholar
Hoche, T., Habelitz, S., Khodos, I.I., J. Cryst. Growth, 192, 185 (1998).CrossRefGoogle Scholar
Garai, M., Sasmal, N., Molla, A. R., Karmakar, B., Solid state sci. 44, 10 (2015).CrossRefGoogle Scholar
Kerstan, M., Muller, M., Russel, C., Mater. Res. Bull. 46, 2456 (2011).CrossRefGoogle Scholar
Tarlakov, Y.P., Eskova, I.F., Shevyakov, A.M., Issled. Strukt. Sostyaniya Neorg. Veshchestu, 1, 7, (1974).Google Scholar
Hamzawy, E.M.A., Darwish, H., Mater. Chem. Phys. 71, 70 (2001).CrossRefGoogle Scholar
da Silveira, C. B., de Campos, S. D., de Castro, S. C., Kawano, Y., Mater. Res. Bull. 34, 1661 (1999).CrossRefGoogle Scholar
Yazawa, T., Tanaka, H., Eguchi, K., Yokoyama, S., J. Mater. Sci. 29, 3433 (1994).CrossRefGoogle Scholar
Shelby, J. E., J. Applied Phys., 49, 5885 (1978).CrossRefGoogle Scholar
Ghosh, S., Kundu, P., Sharma, A. D., Basu, R. N., Maiti, H. S., J. Eu. Ceram. Soc. 28, 69 (2008).CrossRefGoogle Scholar
Salman, S. M., Salama, S. N., Abo-Mosallam, H. A., Ceramics International, 43, 9424 (2017).CrossRefGoogle Scholar
Garai, M., Sasmal, N., Molla, A. R., Singh, S. P., Tarafder, A. and Karmakar, B., J. Mater. Sci. 49, 1612 (2014).CrossRefGoogle Scholar
Ercenk, E., Yilmaz, S., J. Ceram. Proc. Res. 16, 169 (2015).Google Scholar
Garai, M., Karmakar, B., J. Alloys Compd. 678, 360 (2016).Google Scholar
Abdel-Hameed, S. A. M., Ismail, N., Youssef, H. F., Sadek, H. E. H., Marzouk, M. A., International Journal of Hydrogen Energy, 42, 6829 (2017).CrossRefGoogle Scholar
Garai, M., Sasmal, N., Molla, A. R., Tarafder, A., Karmakar, B., J. Mater. Sci.Tech.31, 110 (2015).Google Scholar
Gali, S., Ravikumar, K., Murthy, B. V. S., Basu, B., Dental Materials, 34, 36 (2018).CrossRefGoogle Scholar
Henry, J., Hill, R. G., J. Non-crystalline Solids. 319, 13 (2003).CrossRefGoogle Scholar
Roy, S., Basu, B., J. Mater. Sci.: Mater. Med. 21, 109 (2010).Google Scholar