Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T16:00:44.244Z Has data issue: false hasContentIssue false

Wrinkled graphene – carbon nanospheres composite for ultra high energy supercapacitors

Published online by Cambridge University Press:  03 January 2017

Mohanapriya. K
Affiliation:
Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, India -400019.
Neetu Jha*
Affiliation:
Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, India -400019.
Get access

Abstract

A simple and scalable method is developed to prepare highly wrinkled graphene sheets – carbon nanospheres (WG-CN) composite for ultra high energy density supercapacitor application. Here, we introduce a novel simple paraffin wax candle flame technique for the simultaneous reduction of graphene oxide (GO) and deposition of carbon nanospheres on the graphene sheets. This is followed by introducing permanent wrinkles to the composite. The WG-CN composite exhibit the high specific capacitance values of 290 F g-1 and 253.7 F g-1 (138.5 F cm-3) for 6M KOH and EMIMBF4 ionic liquid electrolytes respectively. The ultra high energy density values of 108 Wh Kg-1 and 58.9 Wh L-1 has been obtained at the power density of 3955 W Kg-1 and 2157 W L-1 simultaneously. These attractive performances exhibited by the WG-CN composite supercapacitor electrode make them potential candidate for future energy storage devices. The key to success of this composite is the ability to make full utilization of the high intrinsic specific surface area of the nanocomposite.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Simon, P. and Gogotsi, Y.. Nat. Mater. 7 (2008) 845854.Google Scholar
Frackowiak, E. and Béguin, F.. Carbon. 39 (2001) 937950.Google Scholar
Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M. and van Schalkwijk, W.. Nat. Mater. 4 (2005) 366377.Google Scholar
Kötz, R. and Carlen, M.. Electrochimica Acta. 45 (2000) 24832498.Google Scholar
WANG, L., Toyoda, M. and Inagaki, M.. New Carbon Mater. 23 (2008) 111115.CrossRefGoogle Scholar
He, X., Geng, Y., Qiu, J., Zheng, M., Long, S. and Zhang, X.. Carbon. 48 (2010) 16621669.Google Scholar
Stepniak, I. and Ciszewski, A.. J. Power Sources. 195 (2010) 25642569.Google Scholar
Kalupson, J., Ma, D., Randall, C.A., Rajagopalan, R. and Adu, K.. J. Phys. Chem. C. 118 (2014) 29432952.Google Scholar
Masarapu, C., Zeng, H.F., Hung, K.H. and Wei, B.. ACS Nano. 3 (2009) 21992206.Google Scholar
Vu, A., Li, X., Phillips, J., Han, A., Smyrl, W.H., Bühlmann, P. and Stein, A.. Chem. Mater. 25 (2013) 41374148.Google Scholar
Xu, B., Wu, F., Chen, R., Cao, G., Chen, S. and Yang, Y.. J. Power Sources. 195 (2010) 21182124.CrossRefGoogle Scholar
Simon, P. and Gogotsi, Y.. Nat. Mater. 7 (2008) 845854.Google Scholar
An, B. K. H., Kim, W. S., Park, Y. S., Choi, Y. C., Lee, S. M., Chung, D. C., Bae, D. J., Lim, S. C., and Lee, Y. H.. Adv. Mater. 13 (2001) 497500.Google Scholar
Huang, N., Lim, H., Chia, C., Yarmo, M. and Muhamad, M.. Int. J. Nanomedicine. 6 (2011) 34433448.Google Scholar
Zhang, B., Wang, D., Yu, B., Zhou, F. and Liu, W.. RSC Adv. 4 (2013) 25862589.CrossRefGoogle Scholar
Karthikeyan, K., Kalpana, D., Amaresh, S. and Lee, Y.S.. RSC Adv. 2 (2012) 1232212328.CrossRefGoogle Scholar
Yanwu Zhu, S.M.. Carbon. 48 (2010) 21182122.Google Scholar
Zhang, L.L., Zhao, X., Stoller, M.D., Zhu, Y., Ji, H., Murali, S., Wu, Y., Perales, S., Clevenger, B. and Ruoff, R.S.. Nano Lett. 12 (2012) 18061812.CrossRefGoogle Scholar