Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:23:47.507Z Has data issue: false hasContentIssue false

White Light Emitting CdS Quantum Dot Devices Coated with Layers of Graphene Carbon Quantum Dots

Published online by Cambridge University Press:  02 December 2020

O. Deodanes*
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
J. C. Molina
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
C. Violantes
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
D. Pleitez
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
J. Cuadra
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
H. Ponce
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
C. Rudamas
Affiliation:
Laboratorio de Espectroscopia Óptica, Escuela de Física, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, El Salvador.
Get access

Abstract

Cadmium sulfide quantum dots (CdS QDs) are semiconductor nanoparticles having sizes in the order of nanometers. They are materials that have outstanding properties for down conversion applications. These nanostructures have been used in the fabrication of white light emitting diodes (WLEDs) in the last years. However, inhomogeneous deposition of CdS QD conversion materials allows unwanted UV light escape. In addition, low efficiency due to strong self-quenching effect, incompatibility between CdS QD solution/crystal polyester resin matrix and reabsorption are common problems that need to be solved. In this work, we try to address the incompatibility between the CdS QD solution/crystal polyester resin matrix by using a solvent exchange procedure. To block the unwanted UV-light escape, we coated our devices with a mixture of graphene carbon quantum dot (GCQD) solution/crystal polyester resin matrix. The QDs and the WLED prototypes were characterized by absorption and photoluminescence (PL) spectroscopy. The QDs embedded in the matrix shown a good homogeneous dispersion. On the other hand, the mixture shown a rapid solidification. These facts indicate a good compatibility between the CdS QDs and the crystal polyester resin. We also observed a considerable reduction of unwanted near UV-light. White light emission from WLED devices with common crystal polyester resin and low-cost materials has been achieved.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahamad, T., Majeed Khan, M.A., Kumar, S., et al. . CdS quantum dots: growth, microstructural, optical and electrical characteristics, Applied Physics B. 122. 179 (2016).CrossRefGoogle Scholar
Kathirgamanathan, P., Bushby, L.M., Kumaraverl, M., et al. . Electroluminescent Organic and Quantum Dot LEDs: The State of the Art. Journal of display technology. 5. 480493 (2015).CrossRefGoogle Scholar
Bansal, A.K., Antolini, F., Zhang, S., et al. . Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near- Infrared Electroluminescence in Light-Emitting Diodes. Journal of physical chemistry c. 120. 18711880 (2016).CrossRefGoogle Scholar
Kang, Y., Song, Z., Jiang, X, et al. . Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence. Nanoscale research letters. 12. 154 (2017).CrossRefGoogle ScholarPubMed
Chou, C.-C., Wang, T.-L., Chen, W.-J., and Yang, C.-H.. Quantum Dot−Acrylic Acrylate Oligomer Hybrid Films for Stable White Light-Emitting Diodes . ACS Omega. 4. 32343243 (2019).10.1021/acsomega.8b03241CrossRefGoogle ScholarPubMed
Nizamoglu, S., Ozel, T., Sari, E., and Demir, H.V.. White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Institute of physics publishing Ltd. 18. 065709 (1-5) (2007).Google Scholar
Zou, Y., Li, D., and Yang, D.. Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators. Nanoscale research letters. 5. 966–71 (2010).CrossRefGoogle ScholarPubMed
Yu, W.W., Qu, L., Guo, W., and Peng, X.. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater., 15: 28542860 (2003).CrossRefGoogle Scholar
Shen, Y., Gee, M.Y., and Greytak, A.B.. Purification technologies for colloidal nanocrystals. Chem. Commun., 53. 827 (2017).CrossRefGoogle ScholarPubMed
Wang, H., Sun, P., Cong, S., et al. . Nitrogen-doped carbon for “green” quantum dots solar cells 11. 27 (2016).CrossRefGoogle Scholar
Cuadra, J., Ponce, H., and Rudamas, C.. In Proceedings of IEEE 2018 38th Central America and Panama Convention (CONCAPAN XXXVIII), 2018, edited by Manuel Cardona.Google Scholar
Ponce, H. and Rudamas, C., Caracterización óptica de defectos superficiales en puntos cuánticos coloidales de Seleniuro de Cadmio (CdSe). Revista Materia , 20, 676681 (2015).Google Scholar
Kumar, N., Alam, F., and Dutta, V.. Photoluminescence Study of Oleic Acid Capped and Hexanoic Acid Washed CdS Quantum Dots. RSC. Advances , 6, 2831628321 (2013).CrossRefGoogle Scholar
Li, F., Nie, C., You, L., et al. . White light emitting devices based on phase CdS quantum dots. Nanotechnology. 29. 205701 (2018).10.1088/1361-6528/aab18eCrossRefGoogle Scholar
Kansy, J., Consolati, G., and Dauwe, C.. Positronium trapping in free volume of polymers. Radiat. Phys., 58. 427431 (2000).CrossRefGoogle Scholar
Chan, C.-M., Wu, J., Li, J.-X., Cheung, Y.-K.. Polypropylene/calcium carbonate nanocomposites. Polymer, 43, 29812992 (2002).CrossRefGoogle Scholar