Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T20:08:34.271Z Has data issue: false hasContentIssue false

Weldability of High-Mn Austenitic Twinning-Induced Plasticity (TWIP) Steel Microalloyed with Nb

Published online by Cambridge University Press:  31 January 2018

I. Mejía*
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066-Morelia, Michoacán, México. E-mail: [email protected]
H. Hernández-Belmontes
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066-Morelia, Michoacán, México. E-mail: [email protected]
C. Maldonado
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio “U-5”, Ciudad Universitaria, 58066-Morelia, Michoacán, México. E-mail: [email protected]
*
Get access

Abstract

The objective of this research work is to study the weldability of a Nb microalloyed TWIP steel through welding nuggets generated by Gas Tungsten Arc Welding process. Weldability was examined by microstructural changes in the fusion zone (FZ) and heat affected zone (HAZ) using light optical metallography (LOM), segregation in the nuggets was evaluated using elemental mappings of chemical analysis by Scanning Electron Microscopy and Electron Dispersive Spectroscopy (SEM-EDS), phase transformations were evaluated using X-ray diffraction (XRD) and the hardness properties were examined using Vickers microhardness testing (HV25). Experimental results show that microstructure of welding nuggets consists of austenitic dendritic grains in the FZ and equiaxed grains in the HAZ. FZ width and HAZ grain growth tend to increase as the heat input increases. Additionally, the studied Nb-containing TWIP steel showed segregation in the FZ, where Mn and Si segregated in the interdendritic regions, while Al and C preferentially segregated in dendritic areas. In general, the data obtained by XRD indicated that GTAW process did not affect austenite stability. Finally, the welding nuggets of studied TWIP steel showed lower microhardness values than the as-solution condition (starting condition). However, the heat affected zone showed hardened areas, which are associated with NbC precipitation hardening.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Cooman, B.C., Estrin, Y. and Kim, S.K., Acta Mater. 142, 283362 (2018).CrossRefGoogle Scholar
Li, D., Feng, Y., Song, S., Liu, Q., Bai, Q., Wu, G., Lv, N. and Ren, F., Mater. Des. 84, 238244 (2015).Google Scholar
Ahmed, M.M.Z., Ahmed, E., Hamada, A.S., Khodir, S.A., Seleman, M.M.E. and Wynne, B.P., Mater. Des. 91, 378387 (2015).Google Scholar
Frommeyer, G., Brüx, U. and Neumann, P., ISIJ Int. 43, 438446 (2003).Google Scholar
Grässel, O., Krüger, L., Frommeyer, G. and Meyer, L.W., Int. J. Plast. 16, 13911409 (2000).Google Scholar
Li-li, M., Ying-hui, W., Li-feng, H. and Bin Yan, Y., J. Iron Steel Res. Int. 21, 749756 (2014).Google Scholar
Bouaziz, O., Allain, S., Scott, C.P., Cugy, P. and Barbier, D., Curr. Opin. Solid State Mater. Sci. 15, 141168 (2011).Google Scholar
Mujica, L., Weber, S., Thomy, C. and Vollertsen, F., Sci. Technol. Weld. Join. 14, 517522 (2009).Google Scholar
Yoo, J., Kim, B., Park, Y. and Lee, C., J. Mater. Sci. 50, 279286 (2015).Google Scholar
Hernández-Belmontes, H., Mejía, I. and Maldonado, C., Mater. Res. Soc. 1812, 3540 (2016).Google Scholar
Lee, C., Jaehong, Y., Kim, S., Park, Y. and Choi, J., In: Proceedings of the 1st International Conference on High Manganese Steels, Seoul. F-7 (2011).Google Scholar
Mujica, L., Weber, S., Pinto, H., Thomy, C. and Vollertsen, F., Mater. Sci. Eng. A 527, 20712078 (2010).Google Scholar
Dobrzański, L.A., Grajcar, A. and Borek, W., J. Achiev. Mater. Manuf. Eng. 31, 714 (2008).Google Scholar
Radhakrishnan, V.M., Welding Technology and Design, New Age International Pvt Ltd Publishers. 2nd ed, (2005).Google Scholar
Lippold, J.C., Welding Metallurgy and Weldability, John Wiley & Sons, Inc., Hoboken, New Jersey, (2015).Google Scholar
Kou, S., Welding Metallurgy, John Wiley & Sons, Inc., Hoboken, New Jersey. 2nd ed, (2003).Google Scholar
Reyes-Calderon, F., Mejia, I., Boulaajaj, A. and Cabrera, J.M., Mater. Sci. Eng. A. 560, 552560 (2013).Google Scholar
Kwon, E.P., Kim, D.Y. and Park, H.K., J. Mater. Eng. Perform. 26, 45004507 (2017).Google Scholar
Debroy, T. and David, S.A., Rev. Mod. Phys. 67, 85112 (1995).CrossRefGoogle Scholar
Easterling, K., Introduction to the Physical Metallurgy of Welding, Elsevier Butterworth-Heinemann. 2nd ed, (1992).Google Scholar
Saha, D.C., Chang, I. and Park, Y., Mater. Charact. 93, 4051 (2014).CrossRefGoogle Scholar
Frommeyer, G., Drewes, E.J. and Engl, B., Rev. Met. Paris. 97, 12451253 (2000).Google Scholar
Dumay, A., Chateau, J.P., Allain, S., Migot, S. and Bouaziz, O., Mater. Sci. Eng. A. 483-484, 184187 (2008).Google Scholar
Saha, D.C., Han, S., Chin, K.G., Choi, I. and Park, Y.D., Phys. Math. 1, 195198 (2011).Google Scholar
Vervynckt, S., Verbeken, K., Thibaux, P., Liebeherr, M. and Houbaert, Y., ISIJ Int. 49, 911920 (2009).Google Scholar
Mejia, I., Reyes, A.E., Bedolla-Jacuinde, A., Calvo, J. and Cabrera, J.M., Mater. Sci. Eng. A. 616, 229239 (2014).Google Scholar