Article contents
A video imaging method for time-dependent measurements of molecular mass transfer and biofilm dynamics in microchannels
Published online by Cambridge University Press: 16 May 2016
Abstract
The biomass accumulation and movement of biofilms in a microchannel is monitored by optical microscopy. First, the average optical density of the biofilm is monitored in time as a measure of biofilm thickness and structural heterogeneity. These results are used as inputs to calculate changing flow velocities due to resulting excluded volume. Next the displacement velocity of moving biofilm segments was recorded in different places in the microchannel. Quantitative analysis by a particle tracking routine showed differences in displacement velocity near and far from the microchannel corner, which is believed to be related to the local shear forces which vary depending on the height of the biofilm segment and its position in the microchannel. The effect of changing biofilm thickness and different hydrodynamic environments in the microchannel are then discussed in terms of their effects on molecular loading rates. Finally, a demonstration of a flow-templated growth approach as a means to homogenize the growth environment.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 1
- Cited by