Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T12:31:02.913Z Has data issue: false hasContentIssue false

Vanadium Oxide Thin Film by Aqueous Spray Deposition

Published online by Cambridge University Press:  10 July 2018

Seth Calhoun*
Affiliation:
Physics Department, University of Central Florida, Orlando, FL, United States.
Rachel Evans
Affiliation:
Physics Department, University of Central Florida, Orlando, FL, United States.
Cameron Nickle
Affiliation:
Physics Department, University of Central Florida, Orlando, FL, United States.
Isaiah O. Oladeji
Affiliation:
SISOM Thin Films LLC, 1209 W. Gore St. Orlando FL 32805
Justin Cleary
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH, United States.
Evan M Smith
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH, United States.
Sayan Chandra
Affiliation:
Physics Department, University of Central Florida, Orlando, FL, United States.
Debashis Chanda
Affiliation:
Physics Department, University of Central Florida, Orlando, FL, United States.
Robert E. Peale
Affiliation:
Physics Department, University of Central Florida, Orlando, FL, United States.
*
Get access

Abstract

Vanadium Oxide has application to infrared bolometers due to high temperature coefficient of resistivity (TCR). It has attracted interest for switchable plasmonic devices due to its metal to insulator transition near room temperature. We report here the properties of vanadium oxide deposited by an aqueous spray process. The films have a ropy surface morphology with ∼70 nm surface roughness. The polycrystalline phase depends on annealing conditions. The films have TCR of ∼2%/deg, which compares well with sputtered films. Only weak evidence is found for an insulator-metal phase transition in these films.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Niklaus, F., Vieider, C., Jakobsen, H., Proc. SPIE 6836 (2007).Google Scholar
Morin, F.J., Phys. Rev. Lett. 3, 34 (1959)CrossRefGoogle Scholar
Fieldhouse, N., Pursel, S. M., Horn, M. W. and Bharadwaja, S. S. N., J. Applied Physics D 42, 055408 (2009).CrossRefGoogle Scholar
Cui, J., Da, D., Jiang, W., Applied Surface Science 133, 225 (1998).CrossRefGoogle Scholar
Chiarello, G., Barberi, R., Amoddeo, A., Caputi, L.S., Colavita, E., Applied Surface Science 99, 15 (1996).CrossRefGoogle Scholar
Rajendra Kumar, R. T., Karunagaran, B., Mangalaraj, D., Narayandass, S. K., Manoravi, P., Joeseph, M., Gopal, V., Sensors and Actuators A: Physical 107, 62 (2003).CrossRefGoogle Scholar
Nagashima, M. and Wada, H., J. Crystal Growth 179, 539 (1997).CrossRefGoogle Scholar
Alhasan, S. F. H., Khalilzadeh-Rezaie, F., Peale, R. E., Oladeji, I. O., MRS Advances 1, 3169 (2016).CrossRefGoogle Scholar
Alhasan, S. F. H., Calhoun, S. R., Abouelkhair, H., Lowry, V. C., Peale, R. E., Rezadad, I., Smith, E. M., Cleary, J. W., Oladeji, I. O., MRS Advances 3, 255 (2018).CrossRefGoogle Scholar
Peale, R. E., Smith, E., Abouelkhair, H., Oladeji, I. O., Vangala, S., Cooper, T., Grzybowski, G., Khalilzadeh-Rezaie, F., Cleary, J. W., Opt. Eng. 56, 037109 (2017).CrossRefGoogle Scholar
Smith, E. M., Panjwani, D., Ginn, J., Warren, A. P., Long, C., Figuieredo, P., Smith, C., Nath, J., Perlstein, J., Walter, N., Hirschmugl, C., Peale, R. E., and Shelton, D., Applied Optics 55, 2071 (2016).CrossRefGoogle Scholar