Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:14:51.088Z Has data issue: false hasContentIssue false

Ultrathin MoS2@C layered structure as an anode of lithium ion battery

Published online by Cambridge University Press:  11 January 2016

Jae-Min Jeong
Affiliation:
Department of Chemical & Biomolecular engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
Seunghwan Seok
Affiliation:
Department of Chemical & Biomolecular engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
Bong Gill Choi
Affiliation:
Department of Chemical Engineering, Kangwon National University, Samcheok 245-711, Republic of Korea.
Do Hyun Kim*
Affiliation:
Department of Chemical & Biomolecular engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
*
Get access

Abstract

We report a simple and scalable process to synthesize the core–shell nanostructure of MoS2@N-doped carbon nanosheets (MoS2@C), in which polydopamine is coated on the MoS2 surface and then carbonized. Transmission electron microscopy reveals that the as-synthesized MoS2@C possesses a nanoscopic and ultrathin layer of MoS2 sheets with a thin and conformal coating of carbon layers (∼5 nm). The MoS2@C demonstrates a superior electrochemical performance as an anode material for lithium ion batteries compared to exfoliated MoS2 sample. This unique core–shell structure is capable of excellent delivery of Li+ ion in charging–discharging process: a specific capacity as high as 1239 mA h g−1, a high rate of charging-discharging capability even at a high current rate of 10 A g−1 while retaining 597 mA h g−1, and a good cycle stability over 70 cycles at a high current rate of 2 A g−1.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., Yushin, G., Nazar, L. F., Cho, J. and Bruce, P. G., Angew. Chem. Int. Ed. 51, 9994 (2012).Google Scholar
Wu, H., Chan, G., Choi, J. W., Ryu, I., Yao, Y., McDowell, M. T., Lee, S. W., Jackson, A., Yang, Y., Hu, L. and Cui, Y., Nat. Nanotechnol.7, 310 (2012).Google Scholar
Gao, M.-R., Xu, Y.-F., Jiang, J. and Yu, S.-H., Chem. Soc. Rev. 42, 2986 (2013).CrossRefGoogle Scholar
Yang, L., Wang, S., Mao, J., Deng, J., Gao, Q., Tang, Y. and Schmidt, O. G., Adv. Mater. 25 1180 (2013).Google Scholar
Liu, H., Su, D., Zhou, R., Sun, B., Wang, G. and Qiao, S. Z., Adv. Energy Mater. 2, 970 (2012).CrossRefGoogle Scholar
Xiao, J., Wang, X., Yang, X.-Q., Xun, S., Liu, G., Koech, P. K., Liu, J. and Lemmon, J. P., Adv. Funct. Mater. 21, 2840 (2011).Google Scholar
Chang, K. and Chen, W., ACS Nano 5, 4720 (2011).Google Scholar
Lee, H., Dellatore, S.M., Miller, W.M. and Messersmith, P.B., Science 318, 426 (2007).Google Scholar
Liu, X., Cao, J., Li, H., Li, J., Jin, Q., Ren, K. and Ji, J., ACS Nano 7, 9384 (2013).Google Scholar
Wang, J.-Z., Lu, L., Lotya, M., Coleman, J. N., Chou, S.-L., Liu, H.-K., Minett, A. I. and Chen, J., Adv. Energy Mater. 3, 798 (2013).Google Scholar
Huang, G., Chen, T., Chen, W., Wang, Z., Chang, K., Ma, L., Huang, F., Chen, D. and Lee, J. Y., Small, 21, 3693 (2013).Google Scholar