Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:59:16.912Z Has data issue: false hasContentIssue false

Towards Reliable Modeling of Challenging f Electrons Bearing Materials: Experience from Modeling of Nuclear Materials.

Published online by Cambridge University Press:  16 January 2017

Piotr M. Kowalski*
Affiliation:
Institute of Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich, Jülich, Germany JARA High-Performance Computing, Schinkelstraße 2, 52062, Aachen, Germany
George Beridze
Affiliation:
Institute of Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich, Jülich, Germany JARA High-Performance Computing, Schinkelstraße 2, 52062, Aachen, Germany
Yaqi Ji
Affiliation:
Institute of Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich, Jülich, Germany JARA High-Performance Computing, Schinkelstraße 2, 52062, Aachen, Germany
Yan Li
Affiliation:
Institute of Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich, Jülich, Germany JARA High-Performance Computing, Schinkelstraße 2, 52062, Aachen, Germany
*
*Corresponding author: e-mail: [email protected]
Get access

Abstract

Because of steady increase in the availability of computing power, ab initio methods of computational materials science become everyday investigation tools in various research fields. This popularity of the first-principle-based atomistic modeling is in large part due to the performance of density functional theory (DFT), which could be used for simulations of chemically and structurally complex materials, including minerals, fluids and melts. However, because of intrinsic approximations, DFT is not always able to deliver reliable predictions. This is especially pronounced for f-elements bearing materials such as nuclear materials considered in nuclear waste management. Properties such as reaction enthalpies or electronic state are often badly predicted. In this contribution we discuss our experience with different computational methods, including the parameter free DFT+U method, in which the Hubbard U parameter is derived ab initio, for prediction of various properties of f electrons bearing materials. We show significant improvement obtained for structural and thermochemical parameters of various lanthanide-bearing ceramic materials and actinide-bearing molecular and solid compounds when the f electrons correlations are explicitly accounted for. Last, but not least, we demonstrate that complementary experimental and atomistic modeling studies result in superior and more complete characterization of challenging materials considered in nuclear waste management.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ewing, R. C., PNAS 96, 3432-3439 (1999)Google Scholar
Chroneos, A., Rushton, M., Jiang, C. and Tsoukalas, L., J. Nucl. Mater. 441, 29 (2013).Google Scholar
Jahn, S. and Kowalski, P. M., Rev. Mineral. Geochem. 78, 691 (2014).Google Scholar
Becke, A. D., Phys. Rev. A 38, 30983100 (1988).Google Scholar
Wen, X.-D., Martin, R. L., Henderson, T. M. and Scuseria, G. E., Chem. Rev. 113, 1063 (2013).Google Scholar
Shamov, G. A., Schreckenbach, G. and Vo, T. N., Chem. Eur. J. 13, 4932 (2007).Google Scholar
Iche-Tarrat, N. and Marsden, C. J., J. Phys. Chem. A 112, 7632 (2008).Google Scholar
Beridze, G. and Kowalski, P. M., J. Phys. Chem. A 118, 11797 (2014).CrossRefGoogle Scholar
Cococcioni, M. and de Gironcoli, S., Phys. Rev. B 71, 035105 (2005).CrossRefGoogle Scholar
Giannozzi, P. et al., J. Phys. Condens. Matter 21, 395502 (2009), http://www.quantum-espresso.org (accessed on 25.11.2016).Google Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Perdew, J. P. et al., Phys. Rev. Lett. 100, 136406 (2008).Google Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Baer, Y. and Schoenes, J., Solid State Commun. 33, 885 (1980).Google Scholar
Yu, J., Devanathan, R. and Weber, W. J., J. Phys. Conden. Matter 21, 435401 (2009).CrossRefGoogle Scholar
Beridze, G., Birnie, A., Koniski, S., Ji, Y. and Kowalski, P. M., Prog. Nucl. Energy 92, 142 (2016).Google Scholar
Kowalski, P. M., Beridze, G., Li, Y., Ji, Y., Friedrich, C., Sasioglu, E. and Blügel, S., Ceram. Trans. 258, 207 (2016).Google Scholar
Ewing, R. and Wang, L., Rev. Mineral. Geochem. 48, 673 (2002).Google Scholar
Blanca-Romero, A., Kowalski, P. M., Beridze, G., Schlenz, H. and Bosbach, D., J. Comput. Chem. 35, 1339 (2014).Google Scholar
Kowalski, P. M., Beridze, G., Vinograd, V. L. and Bosbach, D., J. Nucl. Mater. 464, 147 (2015).CrossRefGoogle Scholar
Li, Y., Kowalski, P. M., Blanca-Romero, A., Vinograd, V. L. and Bosbach, D., J. Solid State Chem. 220, 137 (2014).Google Scholar
Kowalski, P. M. and Li, Y., J. Eur. Ceram. Soc. 36, 2093 (2016).Google Scholar
Li, Y., Kowalski, P. M., Beridze, G., Birnie, A. R., Finkeldei, S. and Bosbach, D., Scr. Mater. 107, 18 (2015).Google Scholar
24. Finkeldei, S., Kegler, P., Kowalski, P. M. et al., Acta Materialia, in press (2016).Google Scholar
Wu, S. et al., Inorganic Chemistry, 53, 7650 (2014).CrossRefGoogle Scholar
Murphy, G. et al., Inorganic Chemistry 55, 9329 (2016).Google Scholar
Xiao, B. et al., Chemistry – European Journal, 22, 946 (2016).Google Scholar