Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:57:12.090Z Has data issue: false hasContentIssue false

Time-domain Brillouin Scattering as a Local Temperature Probe in Liquids

Published online by Cambridge University Press:  02 January 2019

Ievgeniia Chaban
Affiliation:
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, 72085 Le Mans, France Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Le Mans Université, 72085 Le Mans, France
Hyun D. Shin
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Christoph Klieber
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Rémi Busselez
Affiliation:
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, 72085 Le Mans, France
Vitaly Gusev
Affiliation:
Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Le Mans Université, 72085 Le Mans, France
Keith Nelson
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Thomas Pezeril*
Affiliation:
Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, 72085 Le Mans, France
*
Get access

Abstract

We present results of time-domain Brillouin scattering (TDBS) to determine the local temperature of liquids. TDBS is based on an ultrafast pump-probe technique to determine the light scattering frequency shift caused by the propagation of coherent acoustic waves in a sample. Since the temperature influences the Brillouin scattering frequency shift, the TDBS signal probes the local temperature of the liquid. Results for the extracted Brillouin scattering frequencies recorded at different liquid temperatures and at different laser powers are shown to demonstrate the usefulness of TDBS as a temperature probe.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cahill, D., Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar
Schmidt, A., Chiesa, M., Chen, X., Chen, G., Rev. Sci. Instrum. 79, 064902 (2008).CrossRefGoogle Scholar
Cahill, D., Braun, P., Chen, G., Clarke, D. R., Fan, S., Goodson, K., Keblinski, P., King, W., Mahan, G., Majumdar, A., Maris, H., Phillpot, S., Pop, E., Shi, L., Appl. Phys. Rev. 1, 011305 (2014).CrossRefGoogle Scholar
Schmidt, A., Cheaito, R., Chiesa, M., Rev. Sci. Instrum. 80, 094901 (2009).CrossRefGoogle Scholar
Lin, H. N., Stoner, R. J., Maris, H. J., Tauc, J., J. Appl. Phys. 69, 3816 (1991).CrossRefGoogle Scholar
Klieber, C., Pezeril, T., Gusev, V., Nelson, K. A., Phys. Rev. Lett. 114, 065701 (2015).CrossRefGoogle Scholar
Bojahr, A., Herzog, M., Schick, D., Vrejoiu, I., and Bargheer, M., Phys. Rev. B 86, 144306 (2012).CrossRefGoogle Scholar
Mechri, C., Ruello, P., Breteau, J.-M., Baklanov, M., Verdonck, P., Gusev, V., Appl. Phys. Lett. 95, 091907 (2009).CrossRefGoogle Scholar
Nikitin, S., Chigarev, N., Tournat, V., Bulou, A., Gasteau, D., Castagnede, B., Zerr, A., Gusev, V., Scientific reports 5, 9352 (2015).CrossRefGoogle Scholar
Pezeril, T., Klieber, C., Andrieu, S., Nelson, K. A., Phys. Rev. Lett. 102, 107402 (2009).CrossRefGoogle Scholar
Klieber, C., Hecksher, T., Pezeril, T., Torchinsky, D. H., Dyre, J. C., and Nelson, K. A., J. Chem. Phys. 138, 12A544 (2013).CrossRefGoogle Scholar
Pezeril, T., Opt. & Laser Tech. 83, 177 (2016).CrossRefGoogle Scholar
Klieber, C., Ph.D. Thesis, http://hdl.handle.net/1721.1/57801, MIT (2010).Google Scholar
Shelton, L., Yang, F., Ford, W. K., and Maris, H. J., Phys. Stat. Sol. 242, 1379 (2005).CrossRefGoogle Scholar
Maznev, A., Manke, K., Klieber, C., Nelson, K. A., Baek, S., Eom, C., Opt. Lett. 36, 2925 (2011).CrossRefGoogle Scholar
Chaban, I., Shin, D., Klieber, C., Busselez, R., Gusev, V., Nelson, K. A., and Pezeril, T., Rev. of Sci. Instrum. 88, 074904 (2017).CrossRefGoogle Scholar
Christenson, H. K., Horn, R. G., Israelachvili, J. N., J. Colloid Interface Sci. 88, 79 (1982).CrossRefGoogle Scholar
Heuberger, M., Zach, M., Spencer, N., Science 292, 905 (2001).CrossRefGoogle Scholar
Perkin, S., Phys. Chem. Chem. Phys. 14, 5052 (2012).CrossRefGoogle Scholar
Cahill, D., Ford, W., Goodson, K., Mahan, G., Majumdar, A., Maris, H., Merlin, R., J. Appl. Phys. 93, 793 (2003).CrossRefGoogle Scholar