Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T12:36:36.408Z Has data issue: false hasContentIssue false

A Three-Dimensional Atom Probe Microscope Incorporating a Wavelength-Tuneable Femtosecond-Pulsed Coherent Extreme Ultraviolet Light Source

Published online by Cambridge University Press:  03 July 2019

Ann N. Chiaramonti*
Affiliation:
National Institute of Standards and Technology, Boulder, CO, USA
Luis Miaja-Avila
Affiliation:
National Institute of Standards and Technology, Boulder, CO, USA
Paul T. Blanchard
Affiliation:
National Institute of Standards and Technology, Boulder, CO, USA
David R. Diercks
Affiliation:
Colorado School of Mines, Golden, CO, USA
Brian P. Gorman
Affiliation:
Colorado School of Mines, Golden, CO, USA
Norman A. Sanford
Affiliation:
National Institute of Standards and Technology, Boulder, CO, USA
*
Get access

Abstract

Pulsed coherent extreme ultraviolet (EUV) radiation is a potential alternative to pulsed near-ultraviolet (NUV) wavelengths for atom probe tomography. EUV radiation has the benefit of high absorption within the first few nm of the sample surface for elements across the entire periodic table. In addition, EUV radiation may also offer athermal field ion emission pathways through direct photoionization or core-hole Auger decay processes, which are not possible with the (much lower) photon energies used in conventional NUV laser-pulsed atom probe. We report preliminary results from what we believe to be the world’s first EUV radiation-pulsed atom probe microscope. The instrument consists of a femtosecond-pulsed, coherent EUV radiation source interfaced to a local electrode atom probe tomograph by means of a vacuum manifold beamline. EUV photon-assisted field ion emission (of substrate atoms) has been demonstrated on various insulating, semiconducting, and metallic specimens. Select examples are shown.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cadel, E., Vurpillot, F, Larde, R., Duguay, S., and Deconihout, B.. J. Appl. Phys. 106 044908 (2009).CrossRefGoogle Scholar
Hellman, J.A. Vandenbroucke, Rusing, J., Ishiem, D., and Seidman, D.N.. Microsc. Microanal. 6, 437 (2000).CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M., and Ringer, S.P.. Atom Probe Microscopy (Springer, New York, 2012).CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., and Kelly, T.F.. Local Electrode Atom Probe Tomography (Springer, New York, 2013).CrossRefGoogle Scholar
Tsong, T.T.. Atom-Probe Field Ion Microscopy (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
Blavette, D., Sarrau, J.M., Bostel, A., and Gallot, J.. Rev. Phys. Appl. 17 435 (1982).CrossRefGoogle Scholar
Bas, P., Bostel, A., Deconihout, B., and Blavette, D.. Appl. Surf. Sci. 87-88 298 (1995).CrossRefGoogle Scholar
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S., Reinhard, D., Kelly, T.F., and Prosa, T.J.. Microsc. Microanal. 15 S2 292 (2009).CrossRefGoogle Scholar
Gerstl, S.S.A., Tacke, S., Chen, Y-S., Wagner, J., and Wepf, R.. Microsc. Microanal. 23 612 (2017).CrossRefGoogle Scholar
Da Costa, G., Wang, H., Suguay, S., Bostel, A., Blavette, D., and Deconihout, B.. Rev. Sci. Inst. 83 123709 (2012).CrossRefGoogle Scholar
Meisenkothen, F., Steel, E.B., Prosa, T.J., T Henry, K., and Kolli, R. P.. Ultramicroscopy 159 101 (2015).CrossRefGoogle Scholar
Knotek, M.L. and Feibelman, P.J.. Phys. Rev. Lett. 40 964 (1978).CrossRefGoogle Scholar
Knotek, M.L., Jones, V.O., and Rehm, V.. Phys. Rev. Lett. 43 300 (1979).CrossRefGoogle Scholar
Jaenicke, S., Ciszewski, A., Drachsel, W., Weigmann, U., Tsong, T.T., Pitts, J., Block, J., and Menzel, D.. J. Phys. Coll. 47 C7:343 (1986).Google Scholar
Weigmann, W., Jaenicke, S., Pitts, R., Drachsel, W. and Block, J.H.. J. Phys. Coll 47 C2:145 (1986).Google Scholar
Drachsel, W., Jaenicke, S., Ciszewski, A., Dosselmann, J., and Block, J.H.. J. Phys. Coll 48 C6:227 (1987).Google Scholar
Jaenicke, S., Dosselmann, J., Ciszewski, A., Drachsel, W., and Block, J.H.. Surf. Sci. 211 804 (1989).CrossRefGoogle Scholar
Sanford, N.A., Chiaramonti Debay, A.N., Gorman, B.P., and Diercks, D.R..U.S. Patent No 9 899 197 (20 February, 2018).Google Scholar
Sanford, N.A. and Chiaramonti Debay, A.. Patent, U.S. No 10 153 144 (11 December, 2018).Google Scholar
Rundquist, A., Durfee, C.G. III, Chang, Z., Herne, K., Backus, S., Murnane, M.M., and Kapteyn, H.C.. Science 280 1412 (1998).CrossRefGoogle Scholar
Wildenauer, J.. J. Appl. Phys. 62 41 (1987).CrossRefGoogle Scholar
Cirmi, G., Lai, C.-J., Granados, E., Huang, S.-W., Sell, A., Hong, K.-H., Moses, J., Keathley, P., and Kartner, F.X.. J. Phys. B: At. Mol. Opt. Phys. 45 205601 (2012).CrossRefGoogle Scholar
Miaja-Avila, L., Lei, C., Aeschlimann, M., Gland, J.L., Murnane, M.M., Kapteyn, H.C., and Saathoff, G.. Phys. Rev. Lett. 97 113604 (2006).CrossRefGoogle Scholar
Lawrence Berkeley National Laboratory Center for X-Ray Optics. X-Ray Interactions with Matter Filter Transmission Calculator. www.henke.lbl.gov/optical_constants/filter2.html. Accessed 20 March 2019.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.P.. Ultramicroscopy 107 131-129 (2007).CrossRefGoogle Scholar
Waugh, A.R., Boyes, E.D., and Southon, M.J.. Surf. Sci. 61 109 (1976).CrossRefGoogle Scholar
Tsong, T.T., Block, J.H., Nagasaka, M., and Viswanathan, B.. J. Chem. Phys. 65 2469 (1976).CrossRefGoogle Scholar
Dirks, J., Drachsel, W., and Block, J.H.. Appl. Surf. Sci. 67 118 (1993).CrossRefGoogle Scholar