Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T16:59:58.720Z Has data issue: false hasContentIssue false

Thin hydrogel coatings formation catalyzed by immobilized enzyme horseradish peroxidase

Published online by Cambridge University Press:  20 April 2020

Christian Wischke*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Marlin Kersting
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Alexander Welle
Affiliation:
Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Liudmila Lysyakova
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Steffen Braune
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Karl Kratz
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Friedrich Jung
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Matthias Franzreb
Affiliation:
Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Andreas Lendlein
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
*
*Correspondence: [email protected]
Get access

Abstract

Enzymes can be a renewable source of catalytic agents and thus be interesting for sustainable approaches to create and modify functional materials. Here, thin hydrogel layers were prepared as thin coatings on hard substrates by immobilized horseradish peroxidase. Hydrophilic 4-arm star shaped telechelics from oligo(ethylene glycol) bearing on average 55% end groups derived from aromatic amino acids served as monomers and enzymatic substrates. Shifts of the contact angle from 84° to 62° for the wetting process and of zeta potential towards the neutral range illustrated an alteration of physicochemical properties of the model surfaces by a hydrophilic shielding. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), quartz crystal microbalance and atomic force microscopy (AFM) experiments enabled the qualitative and quantitative proof of hydrogel deposition at the interface with thicknesses in the medium nanometer size range. Conceptually, as the immobilized enzyme becomes entrapped in the hydrogel and the crosslinking mechanism bases on a radical reaction after enzymatic activation of the monomers with a limited diffusivity and lifetime, the formed network material can be assumed to be inhomogeneous on the molecular level. On the macroscale, however, relative homogeneity of the coating was observed via ToF-SIMS and AFM mapping. As an exemplary functional evaluation in view of bioanalytical applications, the thrombogenicity of the coating was studied in static tests with human blood from several donors. In the future, this “coating-from” approach may be explored for cell culture substrate coatings, for protein/biofilm repellence in technical applications, or in bioanalytical devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nash, M. E., Carroll, W. M., Foley, P. J., Maguire, G., Connell, C. O., Gorelov, A. V., Beloshapkin, S. and Rochev, Y. A., Soft Matter 8 (14), 3889-3899 (2012).10.1039/c2sm06466aCrossRefGoogle Scholar
Zheng, S. Y., Tian, Y., Zhang, X. N., Du, M., Song, Y., Wu, Z. L. and Zheng, Q., Soft Matter 14 (28), 5888-5897 (2018).10.1039/C8SM01126ECrossRefGoogle Scholar
Moreau, D., Chauvet, C., Etienne, F., Rannou, F. P. and Corte, L., Proc. Natl. Acad. Sci. USA 113 (47), 13295-13300 (2016).10.1073/pnas.1609603113CrossRefGoogle Scholar
Mateescu, A., Wang, Y., Dostalek, J. and Jonas, U., Membranes (Basel) 2 (1), 40-69 (2012).10.3390/membranes2010040CrossRefGoogle Scholar
Cheng, W., Zeng, X. W., Chen, H. Z., Li, Z. M., Zeng, W. F., Mei, L. and Zhao, Y. L., ACS Nano 13 (8), 8537-8565 (2019).CrossRefGoogle Scholar
Wei, Q., Becherer, T., Angioletti-Uberti, S., Dzubiella, J., Wischke, C., Neffe, A. T., Lendlein, A., Ballauff, M. and Haag, R., Angew. Chem. Int. Edit. 53 (31), 8004-8031 (2014).CrossRefGoogle Scholar
Dudley, Q. M., Karim, A. S. and Jewett, M. C., Biotechnol. J. 10 (1), 69-82 (2015).CrossRefGoogle Scholar
Ren, S. Z., Li, C. H., Jiao, X. B., Jia, S. R., Jiang, Y. J., Bilal, M. and Cui, J. D., Chem. Eng. J. 373, 1254-1278 (2019).10.1016/j.cej.2019.05.141CrossRefGoogle Scholar
Wang, X., Chen, S. S., Wu, D. B., Wu, Q., Wei, Q. C., He, B., Lu, Q. H. and Wang, Q. G., Adv. Mater. 30 (17), 1705668 (2018).10.1002/adma.201705668CrossRefGoogle Scholar
Bilal, M. and Iqbal, H. M. N., Catal. Lett. 149 (8), 2204-2217 (2019).10.1007/s10562-019-02821-8CrossRefGoogle Scholar
Wischke, C., Bahr, E., Racheva, M., Heuchel, M., Weigel, T. and Lendlein, A., MRS Adv . 3 (63), 3875-3881 (2018).10.1557/adv.2018.630CrossRefGoogle Scholar
Sakai, S. and Nakahata, M., Chem.-Asian J. 12 (24), 3098-3109 (2017).CrossRefGoogle Scholar
Khanmohammadi, M., Dastjerdi, M. B., Ai, A., Ahmadi, A., Godarzi, A., Rahimi, A. and Ai, J., Biomater. Sci. 6 (6), 1286-1298 (2018).CrossRefGoogle Scholar
Burek, B. O., Bormann, S., Hollmann, F., Bloh, J. Z. and Holtmann, D., Green Chem . 21 (12), 3232-3249 (2019).10.1039/C9GC00633HCrossRefGoogle Scholar
Julich-Gruner, K. K., Roch, T., Ma, N., Neffe, A. T. and Lendlein, A., Clin. Hemorheol. Microcirc. 60 (1), 13-23 (2015).10.3233/CH-151938CrossRefGoogle Scholar
Braune, S., Sperling, C., Maitz, M. F., Steinseifer, U., Clauser, J., Hiebl, B., Krajewski, S., Wendel, H. P. and Jung, F., Colloid Surface B 158, 416-422 (2017).10.1016/j.colsurfb.2017.06.053CrossRefGoogle Scholar
Braune, S., Alagoz, G., Seifert, B., Lendlein, A. and Jung, F., Clin. Hemorheol. Microcirc. 52 (2-4), 349-355 (2012).CrossRefGoogle Scholar
Krainer, F. W. and Glieder, A., Appl. Microbiol. Biot. 99 (4), 1611-1625 (2015).10.1007/s00253-014-6346-7CrossRefGoogle Scholar
Veitch, N. C., Phytochemistry 65 (3), 249-259 (2004).CrossRefGoogle Scholar
RodriguezLopez, J. N., HernandezRuiz, J., GarciaCanovas, F., Thorneley, R. N. F., Acosta, M. and Arnao, M. B., J. Biol. Chem. 272 (9), 5469-5476 (1997).CrossRefGoogle Scholar
Hoyle, M. C., Plant Physiol . 60 (5), 787-793 (1977).CrossRefGoogle Scholar
Chattopadhyay, K. and Mazumdar, S., Biochemistry 39 (1), 263-270 (2000).10.1021/bi990729oCrossRefGoogle Scholar
Lemos, M. A., Oliveira, J. C. and Saraiva, J. A., Lebensm.-Wiss. Technol. 33 (5), 362-368 (2000).10.1006/fstl.2000.0694CrossRefGoogle Scholar
Vogler, E. A., Adv. Colloid Interfac. 74, 69-117 (1998).CrossRefGoogle Scholar
McNamara, T. P. and Blanford, C. F., Analyst 141 (10), 2911-2919 (2016).CrossRefGoogle Scholar
Son, J. H., Lee, S. H., Hong, S., Park, S. M., Lee, J., Dickey, A. M. and Lee, L. P., Lab Chip 14 (13), 2287-2292 (2014).CrossRefGoogle Scholar
Huang, Q., Huang, Q. G., Pinto, R. A., Griebenow, K., Schweitzer-Stenner, R. and Weber, W. J., J. Am. Chem. Soc. 127 (5), 1431-1437 (2005).CrossRefGoogle Scholar
Neta, P. and Grodkowski, J., J. Phys. Chem. Ref. Data 34 (1), 109-199 (2005).10.1063/1.1797812CrossRefGoogle Scholar
Coskun, H., Aljabour, A., Uiberlacker, L., Strobel, M., Hild, S., Cobet, C., Farka, D., Stadler, P. and Sariciftci, N. S., Thin Solid Films 645, 320-325 (2018).10.1016/j.tsf.2017.10.063CrossRefGoogle Scholar
Ball, V., Del Frari, D., Toniazzo, V. and Ruch, D., J. Colloid Interf. Sci. 386, 366-372 (2012).CrossRefGoogle Scholar