Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:02:38.214Z Has data issue: false hasContentIssue false

Thermo-regulating properties of textiles with incorporated microencapsulated Phase Change Materials

Published online by Cambridge University Press:  07 February 2020

Maria Cristina Larciprete*
Affiliation:
Dipartimento di Scienze di Base ed Applicate per l’Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16, 00161 Rome, Italy
Stefano Paoloni
Affiliation:
Dipartimento di Ingegneria Industriale, Università degli Studi di Roma Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Gianmario Cesarini
Affiliation:
Dipartimento di Scienze di Base ed Applicate per l’Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16, 00161 Rome, Italy I.N.F.N. Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
Concita Sibilia
Affiliation:
Dipartimento di Scienze di Base ed Applicate per l’Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16, 00161 Rome, Italy
Vitalija Rubežienė
Affiliation:
Department of Textiles Physical-Chemical Testing, Center for Physical Sciences and Technology, Demokratų str. 53, Kaunas, Lithuania
Audrone Sankauskaitė
Affiliation:
Department of Textile Technologies, Center for Physical Sciences and Technology, Demokratų str. 53, Kaunas, Lithuania
*
Get access

Abstract

Phase change materials (PCMs) are getting increasing interest due to their capacity to absorb, store and release heat energy. Their effectiveness is characterized by quantities of absorbed/released heat energy, expressed as enthalpy. Specifically, the larger is the enthalpy, the more efficient thermoregulation effect is achieved. With this in mind, PCMs can be used in the manufacture of thermally regulated clothing in order to minimize heat strain and simultaneously improve thermal comfort. Moreover, such materials also modify their infrared radiation emission during phase transition, thus they can be envisioned to exploit thermal shielding applications. The aim of the present research was to investigate the infrared emissivity of textiles composed by cotton yarns with dispersed PCMs. The organic microcapsules of phase change materials, having different binding to the fibre mechanisms, were padded onto the fabric surface by pad-dry-cure method. The thermal properties and stabilities were measured using differential scanning calorimetry, while infrared emissivity was characterized using infrared thermographic technique. The obtained experimental results show a dynamic tuning of IR emissivity during heating/cooling process which can be correlated to the type and properties (enthalpy of fusion) of the corresponding PCM.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonner, S.W. and Wynblatt, P., J. Mater. Res. 1, 646 (1986).CrossRefGoogle Scholar
Cesarini, G., Leahu, G., Belardini, A., Centini, M., Li Voti, R., Sibilia, C., International Journal of Thermal Sciences 146, 106061 (2019).CrossRefGoogle Scholar
Ju, C., Wang, Y., He, D., Gao, Q., Gao, L., and Fu, M., Journal of Nanoscience and Nanotechnology 11, 96659670 (2011).CrossRefGoogle Scholar
Lyu, J., Liu, Z., Wu, X., Li, G., Fang, D., and Zhang, X., ACS Nano 13, 22362245 (2019).CrossRefGoogle Scholar
Ying, B.A., Kwok, Y.L., Li, Y., Yeung, C.Y., Zhu, Q.Y. and Li, F.Z., Studies in Computational Intelligence (SCI) 55, 235245 (2007).Google Scholar
Baltusnikaitè, J., Valaseviciute, L., Sankauskaitè, A., Dubinskaitè, K., MATERIALS SCIENCE (MEDŽIAGOTYRA) 21, 419-424 (2015).Google Scholar
Mercuri, F., Cicero, C., Orazi, N., Paoloni, S., Marinelli, M., Zammit, U., International Journal of Thermophysics, 36, 1189-1194 (2015).CrossRefGoogle Scholar
Mercuri, F., Paoloni, S., Orazi, N., Cicero, C. and Zammit, U., Applied Physics A 123, 327 (2017).CrossRefGoogle Scholar
ASTM E1933-99a, American Society for Testing and Materials International, West Conshohocken, PA (1999).Google Scholar
Larciprete, M.C., Paoloni, S., Orazi, N., Mercuri, F., Orth, M., Gloy, Y., Centini, M., Li Voti, R. and Sibilia, C., International Journal of Thermal Sciences 146, 106109 (2019).CrossRefGoogle Scholar
Larciprete, M.C., Paoloni, S., Li Voti, R., Gloy, Y.S. and Sibilia, C., International Journal of Thermal Sciences 132, 168-173 (2018).CrossRefGoogle Scholar
Larciprete, M.C., Gloy, Y.S., Li Voti, R., Cesarini, G., Leahu, G., Bertolotti, M. and Sibilia, C., International Journal of Thermal Sciences 113, 130-135 (2017).CrossRefGoogle Scholar
Li Voti, R., Leahu, G.L., Larciprete, M.C., Sibilia, C. and Bertolotti, M., International Journal of Thermophysics 36, 1004-1015 (2015).CrossRefGoogle Scholar
Belardini, A., Pannone, F., Leahu, G., Larciprete, M.C., Centini, M., Sibilia, C., Martella, C., Giordano, M., Chiappe, D. and de Mongeot, F.B., Journal of the European Optical Society 2012,7.CrossRefGoogle Scholar