Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T18:12:13.125Z Has data issue: false hasContentIssue false

Thermomechanical properties of silica-polyacrylic nanocomposites

Published online by Cambridge University Press:  05 September 2017

Adán Fuentes-Miranda*
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, MEXICO. Departamento de Ingeniería Química Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX. 04510, MEXICO.
Bernardo Campillo-Illanes
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, MEXICO. Departamento de Ingeniería Química Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX. 04510, MEXICO.
Marta Fernández-Garcia
Affiliation:
Ingeniería Macromolecular, Instituto de Ciencia y Tecnología de Polímeros, Madrid, 28006, ESPAÑA.
Daniel López-García
Affiliation:
Ingeniería Macromolecular, Instituto de Ciencia y Tecnología de Polímeros, Madrid, 28006, ESPAÑA.
*
*To whom correspondence should be addressed: [email protected]
Get access

Abstract

The synthesis of inorganic/organic nanocomposite systems, well known as hybrid materials, represents a new class of polymeric materials, which combine properties of inorganic particles, such as barrier, optical, catalytic and conductive properties, among others, with flexibility and transparency of the organic polymer matrix, being easily processable. They could be applied in a diversity of areas such as textiles, inks, adhesion, biomaterials, paints, adhesives, and electronics [1-2]. Within the inorganic materials, silica nanoparticles which present excellent properties, such as high mechanical strength, thermal and chemical stability, and high surface area, have been widely incorporated into a polymer matrix to prepare polymer/silica hybrid materials [3-4]. It is reported that the quantity and the dispersion of nano-SiO2 in the polymer matrix have a real effect on the properties of the final materials [5-6].

In this work, hybrid silica/poly(butyl acrylate-methyl methacrylate-acrylic acid) (SiO2/P(BA-MMA-AA)) were synthesized via in situ semi-batch emulsion polymerization. The results showed that this process was produced with high monomer conversion and low formation of agglomerates. The thermomechanical behavior of the films obtained from latexes was characterized by using thermogravimetric analysis, differential scanning calorimetry, and tensile test. The nanocomposite films displays significantly improved mechanical and thermal properties over its pure polymer film, and also presents almost the same high transparency.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wood, T. J., Ward, L. J., Badyal, J. P. S. “Super-adhesive polymersilica nanocomposite layers”, ACS Appl Mater Interfaces 5:96789683 (2013).CrossRefGoogle Scholar
Raveh, M., Liu, L., Mandler, D., “Electrochemical co-deposition of conductive polymer-silica hybrid thin films”, Phys Chem Chem Phys 15:1087610884 (2013).CrossRefGoogle Scholar
Zhou, X., Shao, H., Liu, H. R., “Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process”, Colloid Polym Sci 291:11811190 (2013).CrossRefGoogle Scholar
Yoda, S., Ohara, M., Takebayashi, Y., Sue, K., Hakuta, Y., Furuya, T., Yamada, M., Otake, K. “A porous polymer-silica composite with a Bvespula-like structure for thermal insulating materials prepared via high pressure phase control”, J. Mater Chem A 1:96209623 (2013).CrossRefGoogle Scholar
Jesionowski, T., Mater, J.. Process. Technol. 203, 121 (2008).CrossRefGoogle Scholar
Zhang, J.X., Ma, P.X., Angew. Chem. Int. Ed. 48, 964 (2009).CrossRefGoogle Scholar
Schweitzer, P.A., Paint and Coatings: Application and Corrosion Resistance, (Taylor & Francis Group, USA, 2006).Google Scholar
Chorng-Shyan, C., Principles and Applications of Emulsion Polymerization, (John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2008).Google Scholar
Bourgeat-Lami, E., Lang, J., “Encapsulation of inorganic particles by dispersion polymerization in polar media”, J. Colloid Interface Sci. 197 293308 (1998).CrossRefGoogle Scholar
Qi, D., Liu, C., Chen, Z., Dong, G., Cao, Z., “In situ emulsion copolymerization of methyl methacrylate and butyl acrylate in the presence of SiO2 with various surface coupling densities”, Colloid Polym. Sci. 293 463471 (2015).CrossRefGoogle Scholar