Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T22:46:17.396Z Has data issue: false hasContentIssue false

Thermoelectricity in periodic and quasiperiodically segmented nanobelts and nanowires

Published online by Cambridge University Press:  02 May 2016

J. Eduardo Gonzalez
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, D.F., Mexico.
Vicenta Sanchez
Affiliation:
Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, D.F., Mexico.
Chumin Wang*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, D.F., Mexico.
*
Get access

Abstract

Thermoelectric properties of segmented nanowires and nanobelts are studied by means of the Kubo-Greenwood formula and a real-space renormalization plus convolution method. The tight-binding and Born models are respectively used for the calculation of electronic and lattice thermal conductivities. In particular, we investigate the thermoelectric figure of merit (ZT) of periodic and quasiperiodically segmented nanowires with two different cross sections, where the segments of the quasiperiodic one are ordered following the Fibonacci sequence. The results show an increase of ZT when the cross section area of nanowires diminishes. In addition, we present results of ZT in segmented nanobelts with an inhomogeneous cross section. For both nanowires and nanobelts, the quasiperiodicity seems to be an important enhancing factor of ZT.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Macia, E., Thermoelectric Materials Advances and Applications (Taylor & Francis, 2015) pp. 38.CrossRefGoogle Scholar
Andrews, S. C., Fardy, M. A., Moore, M. C., Aloni, S., Zhang, M., Radmilovic, V., and Yang, P., Chem. Sci. 2, 706 (2011).CrossRefGoogle Scholar
Wang, Z. L., Adv. Mater. 15, 432 (2003).Google Scholar
Dong, G. H., Zhu, Y. J., Cheng, G. F., and Ruan, Y. J., J. Alloy. Compd. 550, 164 (2013).Google Scholar
Tritt, T. M. (Ed.), Thermal Conductivity: Theory, Properties & Applications (Kluwer, 2004) pp. 3.CrossRefGoogle Scholar
Sanchez, V. and Wang, C., Phys. Rev. B 70, 144207 (2004).Google Scholar
Markussen, T., Nano Lett. 12, 4698 (2012).Google Scholar
Flicker, J. K. and Leath, P. L., Phys. Rev. B 7, 2296 (1973).CrossRefGoogle Scholar
Alfaro, P., Cisneros, R., Bizarro, M., Cruz-Irisson, M., and Wang, C., Nanoscale 3, 1246 (2011).Google Scholar
Snyder, G. J. and Toberer, E. S., Nature Materials 7, 105 (2008).Google Scholar
Tian, Y., Sakr, M. R., Kinder, J. M., Liang, D., MacDonald, M. J., Qiu, R. L. J., Gao, H.-J., and Gao, X. P. A., Nano Lett. 12, 6492 (2012).CrossRefGoogle Scholar