Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T22:21:28.676Z Has data issue: false hasContentIssue false

Thermal Annealing Effect on the Thermal and Electrical Properties of Organic Semiconductor Thin Films

Published online by Cambridge University Press:  22 February 2016

Xinyu Wang
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
Boyu Peng
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
Paddy Chan*
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
*
Get access

Abstract

The thermal and electrical properties of organic semiconductor are playing critical roles in the device applications especially on the devices with large area. Although the effect may be minor in a single device like field effect transistors, the unwanted waste heat would cause much more severe problems in large-scale devices as the power density will go up significantly. The waste heat would lead to performance degradation or even failure of the devices, and thus a more detailed study on the thermal conductivity and carrier mobility of the organic thin film would be beneficial to predict the limits of the device or design a thermally stable device. Here we explore the thermal annealing effect on the thermal and electrical properties of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). After the post deposition thermal annealing, the grain size of the film increases and in-plane crystallinity improves while cross-plane crystallinity keeps relatively constant. We demonstrated the cross-plane thermal conductivity is independent of the thermal annealing temperature and high annealing temperature will reduce the space-charge-limited current (SCLC) mobility. When the annealing temperature increase from 24 °C to 140 °C, the field effect mobility shows a gradual increase while the threshold voltage shifts from positive to negative. The different dependence of the SCLC mobility and field effect mobility on the annealing temperature suggest the improvement of the film crystallinity after thermal annealing is not the only dominating effect. Our investigation provides the constructive information to tune the thermal and electrical properties of organic semiconductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ruiz, R., Choudhary, D., Nickel, B., Toccoli, T., Chang, K.-C., Mayer, A. C., Clancy, P., Blakely, J. M., Headrick, R. L., Iannotta, S., and Malliaras, G. G., Chemistry of Materials 16, 4497 (2004).Google Scholar
Zhang, Z., Ren, X., Peng, B., Wang, Z., Wang, X., Pei, K., Shan, B., Miao, Q., and Chan, P. K., Advanced Functional Materials 25, 6112 (2015).CrossRefGoogle Scholar
Jung, M.-C., Leyden, M. R., Nikiforov, G. O., Lee, M. V., Lee, H.-K., Shin, T. J., Takimiya, K., and Qi, Y., ACS Applied Materials & Interfaces 7, 1833 (2014).Google Scholar
Shin, K., Yang, S. Y., Yang, C., Jeon, H., and Eon Park, C., Applied Physics Letters 91, 023508 (2007).Google Scholar
Song, C. K., Jung, M. K., and Koo, B. W., Journal of the Korean Physical Society 39, 271 (2001).Google Scholar
Rongbin, Y., Mamoru, B., Kazunori, S., Yoshiyuki, O., and Kunio, M., Japanese Journal of Applied Physics 42, 4473 (2003).Google Scholar
Guo, D., Ikeda, S., Saiki, K., Miyazoe, H., and Terashima, K., Journal of Applied Physics 99 (2006).Google Scholar
Chou, D. W., Huang, C. J., Su, C. M., Yang, C. F., Chen, W. R., and Meen, T. H., Solid-State Electronics 61, 76 (2011).Google Scholar
Verploegen, E., Mondal, R., Bettinger, C. J., Sok, S., Toney, M. F., and Bao, Z., Advanced Functional Materials 20, 3519 (2010).Google Scholar
Yamamoto, T. and Takimiya, K., Journal of the American Chemical Society 129, 2224 (2007).Google Scholar
Yamamoto, T. and Takimiya, K., Journal of Photopolymer Science and Technology 20, 57 (2007).Google Scholar
Cahill, D. G., Review of Scientific Instruments 61, 802 (1990).Google Scholar
Lee, S.-M. and Cahill, D. G., Journal of Applied Physics 81, 2590 (1997).Google Scholar
Wang, X., Parrish, K. D., Malen, J. A., and Chan, P. K. L., Scientific Reports 5, 16095 (2015).Google Scholar
Weiß, O. J., Krause, R. K., and Hunze, A., Journal of Applied Physics 103 (2008).CrossRefGoogle Scholar
Murgatroyd, P. N., Journal of Physics D: Applied Physics 3, 151 (1970).Google Scholar
Zhang, L., Xing, X., Chen, Z., Xiao, L., Qu, B., and Gong, Q., Energy Technology 1, 613 (2013).Google Scholar
Jin, Y., Shao, C., Kieffer, J., Pipe, K. P., and Shtein, M., Journal of Applied Physics 112, 093503 (2012).CrossRefGoogle Scholar
Kim, N., Domercq, B., Yoo, S., Christensen, A., Kippelen, B., and Graham, S., Applied Physics Letters 87, 241908 (2005).Google Scholar
Ren, X. C., Wang, S. M., Leung, C. W., Yan, F., and Chan, P. K. L., Applied Physics Letters 99, 043303 (2011).Google Scholar
Mavrokefalos, A., Pettes, M. T., Zhou, F., and Shi, L., Review of Scientific Instruments 78, 034901 (2007).Google Scholar
Hiszpanski, A. M. and Loo, Y.-L., Energy & Environmental Science 7, 592 (2014).Google Scholar