Article contents
Ternary lead-chalcogenide room-temperature mid-wave infrared detectors grown by spray-deposition
Published online by Cambridge University Press: 05 February 2018
Abstract
Ternary lead chalcogenides, such as PbSxSe1-x, offer the possibility of room-temperature infrared detection with engineered cut-off wavelengths within the important 3-5 micron mid-wave infrared (MWIR) wavelength range. We present growth and characterization of aqueous spray-deposited thin films of PbSSe. Complexing agents in the aqueous medium suppress unwanted homogeneous reactions so that growth occurs only by the heterogeneous reaction on the hydrophilic substrate. The strongly-adherent films are smooth with a mirror-like finish. The films comprise densely packed grains with tens of nm dimensions and a total film thickness of ∼400-500 nm. Measured optical constants reveal absorption out to at least 4.5 μm wavelength and a ∼0.3 eV bandgap intermediate between those of PbS and PbSe. The semiconducting films are p-type with resistivity ∼1 and 85 Ohm-cm at 300 and 80 K, respectively. Sharp x-ray diffraction peaks identify the films as Clausthalite-Galena solid-state solution with a lattice constant that indicates an even mixture of PbS and PbSe. The photoconductive response is observed at both nitrogen and room temperature up to at least 2 kHz chopping frequency.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
References
REFERENCES
- 8
- Cited by