Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T21:52:37.498Z Has data issue: false hasContentIssue false

Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD

Published online by Cambridge University Press:  16 January 2017

V. X. Ho
Affiliation:
Department of Physics & Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
S. P. Dail
Affiliation:
Department of Physics & Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
T. V. Dao
Affiliation:
Department of Physics & Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
H. X. Jiang
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, U.S.A.
J. Y. Lin
Affiliation:
Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, U.S.A.
J. M. Zavada
Affiliation:
Department of Electrical and Computer Engineering, New York University, Brooklyn, New York 11201, U.S.A.
N. Q. Vinh*
Affiliation:
Department of Physics & Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
*
Get access

Abstract

We report the temperature dependence of Er optical centers in GaN epilayers prepared by metal-organic chemical vapor deposition under the resonant excitation (4 I 15/24 I 9/2) excitation using a Ti:Sapphire laser (λexc = 809 nm). High resolution infrared spectroscopy and temperature dependence measurements of photoluminescence intensity from Er ions in GaN have been performed to identify the crystal filed splitting of the first excited state, 4 I 13/2. Here, we have employed a simple approach to determine activation energies which are related to the thermal population of electrons from the lowest level to the higher level of the crystal field splitting of the first excited state.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steckl, A. J., Park, J. H., and Zavada, J. M., Mater. Today, 10, 20 (2007).CrossRefGoogle Scholar
O’Donnell, K. and Dierolf, V., Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications. The Netherlands: Springer, 2010.Google Scholar
Vinh, N. Q., Ha, N. N., and Gregorkiewicz, T., P. IEEE, 97, 1269 (2009).Google Scholar
Miniscalco, W. J., J. Lightwave Technol., 9, 234 (1991).Google Scholar
Vinh, N. Q., Minissale, S., Vrielinck, H., and Gregorkiewicz, T., Phys. Rev. B, 76, 085339 (2007).Google Scholar
Steckl, A. J. and Zavada, J. M., MRS Bull., 24, 33 (1999).Google Scholar
Vinh, N. Q., Przybylinska, H., Krasil’nik, Z. F., and Gregorkiewicz, T., Phys. Rev. B, 70, 115332 (2004).Google Scholar
Krasilnik, Z. F., Andreev, B. A., Kryzhkov, D. I., Krasilnikova, L. V., Kuznetsov, V. P., Remizov, D. Y., et al., J. Mater. Res., 21, 574 (2006).Google Scholar
Vinh, N. Q., Przybylinska, H., Krasil’nik, Z. F., Andreev, B. A., and Gregorkiewicz, T., Physica B, 308, 340 (2001).Google Scholar
Vinh, N. Q., Przybylinska, H., Krasil’nik, Z. F., and Gregorkiewicz, T., Phys. Rev. Lett., 90, 066401 (2003).Google Scholar
Denis, A., Goglio, G., and Demazeau, G., Mat. Sci. Eng. R., 50, 167 (2006).Google Scholar
Ugolini, C., Nepal, N., Lin, J. Y., Jiang, H. X., and Zavada, J. M., Appl. Phys. Lett., 90, 051110, (2007).Google Scholar
Dahal, R., Ugolini, C., Lin, J. Y., Jiang, H. X., and Zavada, J. M., Appl. Phys. Lett., 97, 141109, (2010).CrossRefGoogle Scholar
Braud, A., Doualan, J. L., Moncorge, R., Pipeleers, B., and Vantomme, A., Mat. Sci. Eng. B-Solid, 105, 101 (2003).Google Scholar
Braud, A., "Excitation Mechanisms of RE Ions in Semiconductors," Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, 124, 269 (2010).Google Scholar
Lorenz, K., Alves, E., Gloux, F., and Ruterana, P., "RE Implantation and Annealing of III-Nitrides," Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, 124, 25 (2010).Google Scholar
Hansen, D. M., Zhang, R., Perkins, N. R., Safvi, S., Zhang, L., Bray, K. L., et al., Appl. Phys. Lett., 72, 1244 (1998).Google Scholar
Ugolini, C., Nepal, N., Lin, J. Y., Jiang, H. X., and Zavada, J. M., Appl. Phys. Lett., 89, 151903, (2006).Google Scholar
Garter, M., Scofield, J., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett., 74, 182 (1999).Google Scholar
Stachowicz, M., Kozanecki, A., Ma, C. G., Brik, M. G., Lin, J. Y., Jiang, H., et al., Opt. Mater., 37, 165 (2014).Google Scholar
Bodiou, L. and Braud, A., Appl. Phys. Lett., 93, 151107 (2008).CrossRefGoogle Scholar
Song, S. F., Chen, W. D., Zhang, C. G., Bian, L. F., Hsu, C. C., Lu, L. W., et al., Appl. Phys. Lett., 86, 152111 (2005).Google Scholar
George, D. K., Hawkins, M. D., McLaren, M., Jiang, H. X., Lin, J. Y., Zavada, J. M., et al., Appl. Phys. Lett., 107, 171105 (2015).Google Scholar
Ugolini, C., Feng, I. W., Sedhain, A., Lin, J. Y., Jiang, H. X., and Zavada, J. M., Appl. Phys. Lett., 101, 051114 (2012).Google Scholar
Thomas, D. G., Hopfield, J. J., and Frosch, C. J., Phys. Rev. Lett., 15, 857 (1965).Google Scholar