Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T13:23:33.488Z Has data issue: false hasContentIssue false

Synthesis of N-doped carbon based on the waste of Brosimum alicastrum from a pilot plant and evaluation of its electrocatalytic activity for the oxygen reduction reaction

Published online by Cambridge University Press:  28 October 2020

B. Escobar*
Affiliation:
CONACYT-Centro de Investigación Científica de Yucatán, Mérida, Yucatán, 97200, México.
L.G. Verduzco
Affiliation:
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, 97200, México.
K. Y. Perez-Salcedo
Affiliation:
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, 97200, México.
I.L. Alonso-Lemus
Affiliation:
CINVESTAV Unidad- Saltillo, Saltillo, Coahuila, 25900, México
P. Quintana
Affiliation:
CINVESTAV Unidad- Mérida, Mérida, Yucatán, 97310, México
D. Pacheco-Catalán
Affiliation:
Centro de Investigación Científica de Yucatán, Mérida, Yucatán, 97200, México.
Get access

Abstract

This work reports the synthesis and characterization of metal-free electrocatalysts made from Brosimum alicastrum waste as the carbon source. The residues were washed and grounded to a fine powder. The thermogravimetric analysis carried out on the raw sample showed that the optimal synthesis temperature is 700 °C. Thus, the raw sample was pyrolyzed at 700 °C and activated with potassium hydroxide (KOH) in a 2:1 ratio (KOH/fine power) to improve its properties. Afterwards, hydrazine was used as the nitrogen source for doping. The physicochemical characteristics of pyrolyzed, activated, and doped carbons were studied and their electrochemical properties were determined using cyclic and linear voltammetry techniques. The electrochemical measurements indicate that the sample doped at 140 °C has an acceptable onset potential (0.854 V vs. RHE), while the one doped at 160 °C shows the highest current density among the synthesized electrocatalysts (2.61 mA cm-2). Although the catalyst performance is lower compared to commercial 20% Pt/C, this biomass precursor favors the oxygen reduction reaction in alkaline media.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Y., Ruan, J., Sang, S., Zhou, Z., and Wu, Q., “Electrochimica Acta Iron and nitrogen co-doped carbon derived from soybeans as ef fi cient electro-catalysts for the oxygen reduction reaction,” Electrochim. Acta, vol. 215, pp. 388397, 2016, doi: 10.1016/j.electacta.2016.08.090.CrossRefGoogle Scholar
Liu, F., Peng, H., You, C., Fu, Z., and Huang, P., “Electrochimica Acta High-Performance Doped Carbon Catalyst Derived from Nori Biomass with Melamine Promoter,” Electrochim. Acta, vol. 138, pp. 353359, 2014, doi: 10.1016/j.electacta.2014.06.098.CrossRefGoogle Scholar
Wu, X., Yu, X., Lin, Z., Huang, J., and Cao, L., “ScienceDirect Nitrogen doped graphitic carbon ribbons from cellulose as non noble metal catalyst for oxygen reduction reaction,” Int. J. Hydrogen Energy, vol. 41, no. 32, pp. 1411114122, 2016, doi: 10.1016/j.ijhydene.2016.05.275.CrossRefGoogle Scholar
Wang, D. and Su, D., “Environmental Science Heterogeneous nanocarbon materials for oxygen,” Energy Env. Sci, pp. 576591, 2014, doi: 10.1039/c3ee43463j.CrossRefGoogle Scholar
Correa, Catalina Rodriguez, Kruse, Andrea. Biobased Functional Carbon Materials: Production, Characterization, and Applications—A Review. Materials 2018, 11, 1568, doi:10.3390/ma11091568CrossRefGoogle ScholarPubMed
Wong W, M. E., Daud, W, Mohamad, A, Kadhum, A, Loh, K, “Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications.,” Int J Hydrog Energy, vol. 38, pp. 9370–86, 2013.CrossRefGoogle Scholar
Gao, S., Wei, X., Fan, H., Li, L., Geng, K., and Wang, J., “Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction,” Nano Energy, vol. 13, pp. 518526, 2015, doi: 10.1016/j.nanoen.2015.02.031.CrossRefGoogle Scholar
Borghei, M. et al. ., “Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells,” Appl. Catal. B Environ., vol. 204, pp. 394402, May 2017, doi: 10.1016/j.apcatb.2016.11.029.CrossRefGoogle Scholar
Gao, S., Li, L., Geng, K., Wei, X., and Zhang, S., “Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction,” Nano Energy, vol. 16, pp. 408418, 2015, doi: 10.1016/j.nanoen.2015.07.009.CrossRefGoogle Scholar
Zheng, F., Liu, D., Xia, G., Yang, Y., Liu, T., and Wu, M., “Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries.,” J. Alloys Compd., 2016, doi: 10.1016/j.jallcom.2016.10.118.Google Scholar
Fang, Y., Wang, H., Yu, H., and Peng, F., “Electrochimica Acta From chicken feather to nitrogen and sulfur co-doped large surface bio-carbon fl ocs: an ef fi cient electrocatalyst for oxygen reduction reaction,” Electrochim. Acta, vol. 213, pp. 273282, 2016, doi: 10.1016/j.electacta.2016.07.121.CrossRefGoogle Scholar
Peters, C. M. and Pardo-Tejeda, E., “Brosimum alicastrum (Moraceae): uses and potential in Mexico,” Econ. Bot., vol. 36, no. 2, pp. 166175, 1982, doi: 10.1007/BF02858712.CrossRefGoogle Scholar
Hernández-González, O., Vergara-Yoisura, S., and Larqué-Saavedra, A., “Primeras etapas de crecimiento de Brosimum alicastrum Sw. en Yucatán,” Rev. Mex. Ciencias For., vol. 6, no. 27, pp. 3848, 2018, doi: 10.29298/rmcf.v6i27.279.Google Scholar
Liu, X., Yu, X., Xie, L., Li, F., Chen, M., & Li, L., “Kinetics and mechanism of thermal decomposition of corn starches with different amylose/amylopectin ratios. Starch/Starke,” vol. 62, pp. 139146, 2010.CrossRefGoogle Scholar
Wu, A., Yan, J., Xu, W., and Li, X., “Fabrication of waste biomass derived carbon by pyrolysis,” Mater. Lett., vol. 173, pp. 6063, 2016, doi: 10.1016/j.matlet.2016.03.025.CrossRefGoogle Scholar
Olaf A, R. A. R.. Hougen, Kenneth M. Watson, “Balances de materia y energía,” in Principios de los procesos quimicos, 2006, pp. 390407.Google Scholar
Thommes, M. et al. ., “Physisorption of gases , with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” vol. 87, pp. 10511069, 2015, doi: 10.1515/pac-2014-1117.CrossRefGoogle Scholar
Lin, G., Ma, R., Zhou, Y., Liu, Q., and Dong, X., “KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction,” Electrochim. Acta, vol. 261, pp. 4957, 2018, doi: 10.1016/j.electacta.2017.12.107.CrossRefGoogle Scholar
Sun, J., Niu, J., Liu, M., Ji, J., Dou, M., and Wang, F., “Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors,” Appl. Surf. Sci., vol. 427, pp. 807813, 2018, doi: 10.1016/j.apsusc.2017.07.220.CrossRefGoogle Scholar
Tian, J., Gao, F., Yu, X., Wu, W., and Meng, H., “Particuology Preparation of nitrogen-doped graphene by high-gravity technology and its application in oxygen reduction,” Particuology, vol. 34, pp. 110117, 2017, doi: 10.1016/j.partic.2017.03.002.CrossRefGoogle Scholar
Huang, B., Peng, L., Yang, F., Liu, Y., and Xie, Z., “Improving ORR activity of carbon nanotubes by hydrothermal carbon deposition method,” J. Energy Chem., vol. 26, no. 4, pp. 712718, 2017, doi: 10.1016/j.jechem.2017.03.016.CrossRefGoogle Scholar
Wei, H. et al. ., “Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells,” Electrochim. Acta, vol. 231, pp. 403411, 2017, doi: 10.1016/j.electacta.2017.01.194.CrossRefGoogle Scholar
Pérez-Villar, S., Lanz, P., Schneider, H., and Novák, P., “Characterization of a model solid electrolyte interphase / carbon interface by combined in situ Raman / Fourier transform infrared microscopy,” Electrochim. Acta, vol. 106, pp. 506515, 2013, doi: 10.1016/j.electacta.2013.05.124.CrossRefGoogle Scholar
Pérez-Villar, S., Lanz, P., Schneider, H., and Novák, P., “Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy,” Electrochim. Acta, vol. 106, pp. 506515, 2013, doi: 10.1016/j.electacta.2013.05.124.CrossRefGoogle Scholar
Morgan, D. J., “Imaging XPS for industrial applications,” J. Electron Spectros. Relat. Phenomena, 2017, doi: 10.1016/j.elspec.2017.12.008.Google Scholar
Xu, H., Ma, L., and Jin, Z., “Nitrogen-doped graphene: Synthesis, characterizations and energy applications,” J. Energy Chem., vol. 27, no. 1, pp. 146160, 2018, doi: 10.1016/j.jechem.2017.12.006.CrossRefGoogle Scholar
Ratso, S., et al., “Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media,” Carbon N. Y., vol. 73, pp. 361370, 2014, doi: 10.1016/j.carbon.2014.02.076.CrossRefGoogle Scholar
Wang, N., Li, T., Song, Y., Liu, J., and Wang, F., “Metal-free nitrogen-doped porous carbons derived from pomelo peel treated by hypersaline environments for oxygen reduction reaction,” Carbon N. Y., vol. 130, pp. 692700, 2018, doi: 10.1016/j.carbon.2018.01.068.CrossRefGoogle Scholar
Kong, J. and Cheng, W., “Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction,” Cuihua Xuebao/Chinese J. Catal., vol. 38, no. 6, pp. 951969, 2017, doi: 10.1016/S1872-2067(17)62801-8.CrossRefGoogle Scholar
Li, S., Han, K., Li, J., Li, M., and Lu, C., “Microporous and Mesoporous Materials Preparation and characterization of super activated carbon produced from gulfweed by KOH activation,” Microporous Mesoporous Mater., vol. 243, pp. 291300, 2017, doi: 10.1016/j.micromeso.2017.02.052.CrossRefGoogle Scholar
Laksaci, H., Kheli, A., Trari, M., and Addoun, A., “Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides,” vol. 147, pp. 254262, 2017, doi: 10.1016/j.jclepro.2017.01.102.CrossRefGoogle Scholar
Sekol, R. C., Li, X., Cohen, P., Doubek, G., Carmo, M., and Taylor, A. D., “Applied Catalysis B: Environmental Silver palladium core – shell electrocatalyst supported on MWNTs for ORR in alkaline media,” "Applied Catal. B, Environ., vol. 138–139, pp. 285293, 2013, doi: 10.1016/j.apcatb.2013.02.054.CrossRefGoogle Scholar
Pérez-Salcedo, K.Y., Alonso-Lemus, I.L., Quintana, P., Mena-Durán, C.J., Barbosa, Romeli, Escobar, B.. Self-doped Sargassum spp. derived biocarbon as electrocatalysts for ORR in alkaline media. International Journal of Hydrogen Energy 44 (2019) 12399-12408. doi.org/10.1016/j.ijhydene.2018.10.073CrossRefGoogle Scholar
Chen, P, Wang, L-K, Wang, G, Gao, M-R, Ge, J, Yuan, W-J, et al. . Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 2014;7:4095-103, doi.org/10.1039/C4EE02531H.CrossRefGoogle Scholar
Weththasinha, HABMD, Yan, Z, Gao, L, Li, Y, Pan, D, Zhang, M, et al. . Nitrogen doped lotus stem carbon as electrocatalyst comparable to Pt/C for oxygen reduction reaction in alkaline media. Int J Hydrogen Energy 2017;42:20560-7, doi.org/10.1016/j.ijhydene.2017.06.011.CrossRefGoogle Scholar