Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T20:12:19.296Z Has data issue: false hasContentIssue false

Synthesis, characterisation and preliminary corrosion behaviour assessment of simulant Fukushima nuclear accident fuel debris

Published online by Cambridge University Press:  24 January 2020

Clémence Gausse*
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom
Calum W. Dunlop
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom
Aidan A. Friskney
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom
Martin C. Stennett
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom
Neil C. Hyatt
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom
Claire L. Corkhill
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, United Kingdom
*
Get access

Abstract

Nuclear fuel debris generated at the Fukushima Daiichi nuclear power plant during the loss of coolant accident in 2011, still resides within the reactor units, constantly cooled by water. Until it is retrieved, the fuel debris will corrode, releasing radioactive elements into the coolant water and the ground surrounding the reactors. To predict the corrosion behaviour of these materials, and to establish parameters for experiments with U-containing and real fuel debris, the corrosion of two surrogate fuel debris materials, with a composition of Ce(1-x)ZrxO2 (x = 0.2 and 0.4), was investigated. Materials were synthesised by a wet chemistry route and pellets were sintered at 1700°C in air atmosphere. Due to the slow corrosion kinetics, aggressive conditions were applied, and corrosion experiments were performed in 9 mol.L-1 HNO3 under static conditions. The incorporation of Zr into the structure of Ce reduced the normalised dissolution rate; from (3.75 ± 0.15) × 10-6 g.m-2.d-1 to (4.96 ± 0.28) × 10-6 g.m-2.d-1 for RL(Ce) of Ce0.8Zr0.2O2 and Ce0.6Zr0.4O2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nuclear Damage Compensation and Decommissioning Facilitation Corporation, Technical Strategic Plan 2017 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc., 2017.Google Scholar
Japan Nuclear Emergency Response Headquarters, Additional Report of the Japanese Government to the IAEA - The Accident at TEPCO’s Fukushima Nuclear Power Stations- (Second Report) (Summary), http://Www.Kantei.Go.Jp/Foreign/Kan/Topics/201106/Iaea_houkokusho_e.Html. (2011) 45. http://ci.nii.ac.jp/naid/10031060829/en/ (accessed September 4, 2019).Google Scholar
Yanagisawa, K., Imamura, F., Sakakiyama, T., Annaka, T., Takeda, T., Shuto, N., Tsunami assessment for risk management at nuclear power facilities in Japan, in: Pure Appl. Geophys., Birkhäuser-Verlag, 2007: pp. 565576. doi:10.1007/s00024-006-0176-1.Google Scholar
Dienst, W., Hofmann, P., Kerwin-Peck, D.K., Chemical Interactions Between UO2 and Zircaloy-4 from 1000 to 2000°C, Nucl. Technol. 65 (1984) 109124. doi:10.13182/NT84-A33378.CrossRefGoogle Scholar
Bartel, T.J., Dingreville, R., Littlewood, D., Tikare, V., Bertolus, M., Blanc, V., Bouineau, V., Carlot, G., Desgranges, C., Dorado, B., Dumas, J.C., Freyss, M., Garcia, P., Gatt, J.M., Gueneau, C., Julien, J., Maillard, S., Martin, G., Masson, R., Michel, B., Piron, J.P., Sabathier, C., Skorek, R., Toffolon, C., Valot, C., Van Brutzel, L., Besmann, T.M., Chernatynskiy, A., Clarno, K., Gorti, S.B., Radhakrishnan, B., Devanathan, R., Dumont, M., Maugis, P., El-Azab, A., Iglesias, F.C., Lewis, B.J., Krack, M., Yun, Y., Kurata, M., Kurosaki, K., Largenton, R., Lebensohn, R.A., Malerba, L., Oh, J.Y., Phillpot, S.R., Tulenko, J.S., Rachid, J., Stan, M., Sundman, B., Tonks, M.R., Williamson, R., Van Uffelen, P., Welland, M.J., Valot, C., Stan, M., Massara, S., Tarsi, R., State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels, (2015). https://inis.iaea.org/search/search.aspx?orig_q=RN:47032405 (accessed September 4, 2019).Google Scholar
Hofmann, P., Kerwin-Peck, D., UO2/Zircaloy-4 chemical interactions from 1000 to 1700°C under isothermal and transient temperature conditions, J. Nucl. Mater. 124 (1984) 80105. doi:10.1016/0022-3115(84)90013-8.CrossRefGoogle Scholar
Ferreira, T., ImageJ/Fiji, W.R.-, undefined 2012, ImageJ user guide, Researchgate.Net. (n.d.). https://www.researchgate.net/file.PostFileLoader.html?id=536d58bcd039b1f84c8b45c6&assetKey=AS%3A273531969966088%401442226512749 (accessed September 5, 2019).Google Scholar
Cordara, T., Szenknect, S., Claparede, L., Podor, R., Mesbah, A., Lavalette, C., Dacheux, N., Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction, J. Nucl. Mater. 496 (2017) 251264. doi:10.1016/J.JNUCMAT.2017.09.038.CrossRefGoogle Scholar
Prajapati, R.R., Srinivasan, T.G., Chandramouli, V., Bhagwat, S.S., Dissolution kinetics of zirconium dioxide in nitric acid, Desalin. Water Treat. 52 (2014) 490497. doi:10.1080/19443994.2013.808804.CrossRefGoogle Scholar
Claparede, L., Clavier, N., Dacheux, N., Moisy, P., Podor, R., Ravaux, J., Influence of Crystallization State and Microstructure on the Chemical Durability of Cerium–Neodymium Mixed Oxides, Inorg. Chem. 50 (2011) 90599072. doi:10.1021/ic201269c.CrossRefGoogle ScholarPubMed
Vigier, N., Grandjean, S., Arab-Chapelet, B., Abraham, F., Reaction mechanisms of the thermal conversion of Pu(IV) oxalate into plutonium oxide, J. Alloys Compd. 444445 (2007) 594597. doi:10.1016/J.JALLCOM.2007.01.057.Google Scholar
Corkhill, C.L., Stennett, M.C., Hyatt, N.C., Solution Composition Effects on the Dissolution of a CeO 2 analogue for UO 2 and ThO 2 nuclear fuels, MRS Proc. 1744 (2015) 185190. doi:10.1557/opl.2015.334.CrossRefGoogle Scholar
Kumagai, Y., Takano, M., Watanabe, M., Reaction of hydrogen peroxide with uranium zirconium oxide solid solution – Zirconium hinders oxidative uranium dissolution, J. Nucl. Mater. 497 (2017) 5459. doi:10.1016/j.jnucmat.2017.10.050.CrossRefGoogle Scholar