Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:27:55.887Z Has data issue: false hasContentIssue false

Synthesis and properties of covalently linked photoluminescent magnetic magnetite nanoparticle-silicon nanocrystal hybrids

Published online by Cambridge University Press:  20 June 2016

Morteza Javadi
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada. E-mail:[email protected]; Fax: +1-780-492-8231; Tel: +1-780-492-7206
Tapas Purkait
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada. E-mail:[email protected]; Fax: +1-780-492-8231; Tel: +1-780-492-7206
Lida Hadidi
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada. E-mail:[email protected]; Fax: +1-780-492-8231; Tel: +1-780-492-7206
John Washington
Affiliation:
Department of Chemistry, Concordia University of Edmonton, 7128 Ada Boulevard, Edmonton Alberta, Canada
Jonathan G. C. Veinot*
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada. E-mail:[email protected]; Fax: +1-780-492-8231; Tel: +1-780-492-7206
*
Get access

Abstract

Silicon nanocrystals (SiNCs) are quantum dots that do not contain toxic metals and exhibit a photoluminescent response that may be tailored via changes in particle dimension as well as surface chemistry. Herein, we present a promising hybrid nanomaterial that combines the favourable properties (e.g., photoluminescence, biocompatibility, and surface chemistry) of SiNCs with the magnetic characteristics of Fe3O4 nanoparticles (NPs). Linking these two complementary nanomaterials via DCC coupling has yielded a new advanced hybrid material that possesses the characteristics of its constituents and affords a photoluminescent system that responds to permanent magnets.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Heitmann, J., Müller, F., Zacharias, M., and Gösele, U., Adv. Mater. 17, 795 (2005).CrossRefGoogle Scholar
Dasog, M., Kehrle, J., Rieger, B., and Veinot, J. G. C., Angew. Chemie Int. Ed. 55, 2322 (2016).CrossRefGoogle Scholar
Mahmoudi, M. and Shokrgozar, M. A., Chem. Commun. 48, 3957 (2012).CrossRefGoogle Scholar
Kim, J., Lee, J. E., Lee, J., Yu, J. H., Kim, B. C., An, K., Hwang, Y., Shin, C.-H., Park, J.-G., and Kim, J., J. Am. Chem. Soc. 128, 688 (2006).CrossRefGoogle Scholar
Corr, S. A., Rakovich, Y. P., and Gun’ko, Y. K., Nanoscale Res. Lett. 3, 87 (2008).CrossRefGoogle Scholar
Weller, H., Curr. Opin. Colloid Interface Sci. 3, 194 (1998).CrossRefGoogle Scholar
Alivisatos, P., Nat Biotech 22, 47 (2004).CrossRefGoogle Scholar
Kolosnjaj-tabi, J., Wilhelm, C., Clément, O., and Gazeau, F., J. Nanobiotechnology 11, S7 (2013).CrossRefGoogle Scholar
Jin, S., Hu, Y., Gu, Z., Liu, L., and Wu, H., 2011 (2011).CrossRefGoogle Scholar
Resch-genger, U., Grabolle, M., Cavaliere-jaricot, S., Nitschke, R., and Nann, T., 5, 763 (2008).Google Scholar
Park, J.-H., Gu, L., Von Maltzahn, G., Ruoslahti, E., Bhatia, S. N., and Sailor, M. J., Nat. Mater. 8, 331 (2009).CrossRefGoogle Scholar
Gao, X. and Nie, S., J. Phys. Chem. B 107, 11575 (2003).CrossRefGoogle Scholar
Selvan, S. T., Biointerphases 5, FA110 (2010).CrossRefGoogle Scholar
Jin, S., Hu, Y., Gu, Z., Liu, L., and Wu, H.-C., J. Nanomater. 2011, 13 (2011).CrossRefGoogle Scholar
Erogbogbo, F., Yong, K.-T., Hu, R., Law, W., Ding, H., Chang, C., Prasad, P. N., Swihart, M. T., Oxide, I. I. I. I., Erogbogbo, F., Yong, K.-T., Hu, R., Law, W., Ding, H., and Chang, C., ACS Nano 4, 5131 (2010).CrossRefGoogle Scholar
Hessel, C. M., Henderson, E. J., Veinot, J. G. C., Uni, V., V February, R., Re, V., Recei, M., and August, V., Chem. Mater. 18, 6139 (2006).CrossRefGoogle Scholar
Yang, Z., Gonzalez, C. M., Purkait, T. K., Iqbal, M., Meldrum, A., and Veinot, J. G. C., Langmuir 31, 10540 (2015).CrossRefGoogle Scholar
Sun, S. and Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002).CrossRefGoogle Scholar
Acres, R. G., V Ellis, A., Alvino, J., Lenahan, C. E., Khodakov, D. A., Metha, G. F., and Andersson, G. G., J. Phys. Chem. C 116, 6289 (2012).CrossRefGoogle Scholar
Zhai, Y., Dasog, M., Snitynsky, R. B., Purkait, T. K., Aghajamali, M., Hahn, A. H., Sturdy, C. B., Lowary, L., and Veinot, J. G. C., J. Mater. Chem. B Mater. Biol. Med. 2, 8427 (2014).CrossRefGoogle Scholar
Purkait, T. K., Iqbal, M., Wahl, M. H., Gottschling, K., Gonzalez, C. M., Islam, M. A., and Veinot, J. G. C., J. Am. Chem. Soc. 136, 17914 (2014).CrossRefGoogle Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R. N., Chem. Rev. 108, 2064 (2008).CrossRefGoogle Scholar
Lu, A., Salabas, E. L, and Schüth, F., Angew. Chemie Int. Ed. 46, 1222 (2007).CrossRefGoogle Scholar
Huber, D. L., Small 1, 482 (2005).CrossRefGoogle Scholar
Photong, S. and Boonamnuayvitaya, V., 453 (2010).doi:10.1007/s11270-009-0268-5 CrossRefGoogle Scholar
Sheehan, J. C., Hess, G. P., Lerner, A. B., and Lee, T. E. H. H., J. Am. Chem. Soc. 77, 1067 (1955).CrossRefGoogle Scholar
Neises, B. and Steglich, W., Angew. Chemie Int. Ed. English 17, 522 (1978).CrossRefGoogle Scholar