Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T17:02:48.326Z Has data issue: false hasContentIssue false

Synthesis and characterization of Se-based nanoparticles as potential generators of reactive oxygen species

Published online by Cambridge University Press:  19 February 2019

Nadja Maldonado-Luna*
Affiliation:
Department of Mechanical Engineering, University of Puerto Rico at Mayaguez
Sonia Bailón-Ruiz
Affiliation:
Department of Chemistry and Physics, University of Puerto Rico at Ponce
Myrna Reyes-Blas
Affiliation:
Department of Chemistry, University of Puerto Rico at Mayaguez
Oscar J. Perales-Perez
Affiliation:
Department of Engineering Sciences & Materials, University of Puerto Rico at Mayagüez
*
Get access

Abstract

This work presents the synthesis of selenium-based nanoparticles via microwave-assisted heating and their subsequent characterization using UV-vis Spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX), techniques. Ongoing research includes the study of the nanoparticles capacity to generate reactive oxygen species (ROS).

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sonkusre, P. and Cameotra, S. S., J. Nanobiotechnology 15, 1 (2017).CrossRefGoogle Scholar
Kong, L., Yuan, Q., Zhu, H., Li, Y., Guo, Q., Wang, Q., Bi, X., and Gao, X., Biomaterials 32, 6515 (2011).CrossRefGoogle Scholar
Shang, L., Nienhaus, K., and Nienhaus, G. U., J. Nanobiotechnology 12, 5 (2014).CrossRefGoogle Scholar
Ogawara, K. and Higaki, K., Chem. Pharm. Bull. (Tokyo). 65, 637 (2017).CrossRefGoogle ScholarPubMed
Dong, J. and Liu, B., Chemotherapy 05, (2016).Google Scholar
Raza, M. H., Siraj, S., Arshad, A., Waheed, U., Aldakheel, F., Alduraywish, S., and Arshad, M., J. Cancer Res. Clin. Oncol. 143, 1789 (2017).CrossRefGoogle Scholar
Zhao, J., Li, Y., Shang, E., and Pang, W., Glob. J. Nanomedicine 1, 10 (2017).Google Scholar
Sun, J., Kormakov, S., Liu, Y., Huang, Y., Wu, D., and Yang, Z., Molecules 23, 1704 (2018).CrossRefGoogle ScholarPubMed
Wang, Q., Mejía Jaramillo, A., Pavon, J. J., and Webster, T. J., J. Biomed. Mater. Res. - Part B Appl. Biomater. 104, 1352 (2016).CrossRefGoogle Scholar
Cherin, P. and Unger, P., Inorg. Chem. 6, 1589 (1967).CrossRefGoogle Scholar
Zhang, S. Y., Zhang, J., Wang, H. Y., and Chen, H. Y., Mater. Lett. 58, 2590 (2004).CrossRefGoogle Scholar
Calderón-Ortiz, E., Bailón-Ruiz, S., Alamo-Nole, L., Rodriguez-Orengo, J., and Perales-Perez, O., MRS Proc. 1784, mrss15 (2015).CrossRefGoogle Scholar
Bailón-Ruiz, S. and Perales-Pérez, O. J., Appl. Mater. Today 9, 161 (2017).CrossRefGoogle Scholar
Bailon-Ruiz, S., Alamo-Nole, L., and Perales-Perez, O., Curr. Nanosci. 8, 202 (2012).CrossRefGoogle Scholar
Shah, C. P., Singh, K. K., Kumar, M., and Bajaj, P. N., Mater. Res. Bull. 45, 56 (2010).CrossRefGoogle Scholar
Lin, Z. and Wang, C. R. C., Mater. Chem. Phys. 92, 591 (2005).CrossRefGoogle Scholar